274 research outputs found

    Implementation of harris corner detector on fpga

    Get PDF
    Harris Corner Detector (HCD) algorithm is widely used in many applications of image processing. Its performance with noisy images exceeds many other methods, in terms of accuracy and stability. Various methods are used to compare images and detect moving objects such as block matching but these methods are slow and have less accuracy. Moreover, the implementation of HCD has been proven to be computationally intensive, therefore, real-time streaming is difficult to achieve with sequential software implementation. This report presents the hardware implementation of HCD using Field-Programmable Gate Array (FPGA). The targeted board for the design is DE2-115 FPGA development board with an Altera Cyclone IV device. The architecture was tested using a SystemVerilog test-bench, enveloped by a MATLAB test-bench. The accuracy of the results obtained was tested visually and compared with the results of the same algorithm implemented in MATLAB. A maximum operational frequency of 170 MHz was achieved. The system uses 40% of the board’s logic elements. Resource utilization and timing performance are considerably balanced compared to recent works

    Hardware/Software Codesign of Embedded Systems with Reconfigurable and Heterogeneous Platforms

    Full text link

    Dynamically reconfigurable architecture for embedded computer vision systems

    Get PDF
    The objective of this research work is to design, develop and implement a new architecture which integrates on the same chip all the processing levels of a complete Computer Vision system, so that the execution is efficient without compromising the power consumption while keeping a reduced cost. For this purpose, an analysis and classification of different mathematical operations and algorithms commonly used in Computer Vision are carried out, as well as a in-depth review of the image processing capabilities of current-generation hardware devices. This permits to determine the requirements and the key aspects for an efficient architecture. A representative set of algorithms is employed as benchmark to evaluate the proposed architecture, which is implemented on an FPGA-based system-on-chip. Finally, the prototype is compared to other related approaches in order to determine its advantages and weaknesses

    Cross layer reliability estimation for digital systems

    Get PDF
    Forthcoming manufacturing technologies hold the promise to increase multifuctional computing systems performance and functionality thanks to a remarkable growth of the device integration density. Despite the benefits introduced by this technology improvements, reliability is becoming a key challenge for the semiconductor industry. With transistor size reaching the atomic dimensions, vulnerability to unavoidable fluctuations in the manufacturing process and environmental stress rise dramatically. Failing to meet a reliability requirement may add excessive re-design cost to recover and may have severe consequences on the success of a product. %Worst-case design with large margins to guarantee reliable operation has been employed for long time. However, it is reaching a limit that makes it economically unsustainable due to its performance, area, and power cost. One of the open challenges for future technologies is building ``dependable'' systems on top of unreliable components, which will degrade and even fail during normal lifetime of the chip. Conventional design techniques are highly inefficient. They expend significant amount of energy to tolerate the device unpredictability by adding safety margins to a circuit's operating voltage, clock frequency or charge stored per bit. Unfortunately, the additional cost introduced to compensate unreliability are rapidly becoming unacceptable in today's environment where power consumption is often the limiting factor for integrated circuit performance, and energy efficiency is a top concern. Attention should be payed to tailor techniques to improve the reliability of a system on the basis of its requirements, ending up with cost-effective solutions favoring the success of the product on the market. Cross-layer reliability is one of the most promising approaches to achieve this goal. Cross-layer reliability techniques take into account the interactions between the layers composing a complex system (i.e., technology, hardware and software layers) to implement efficient cross-layer fault mitigation mechanisms. Fault tolerance mechanism are carefully implemented at different layers starting from the technology up to the software layer to carefully optimize the system by exploiting the inner capability of each layer to mask lower level faults. For this purpose, cross-layer reliability design techniques need to be complemented with cross-layer reliability evaluation tools, able to precisely assess the reliability level of a selected design early in the design cycle. Accurate and early reliability estimates would enable the exploration of the system design space and the optimization of multiple constraints such as performance, power consumption, cost and reliability. This Ph.D. thesis is devoted to the development of new methodologies and tools to evaluate and optimize the reliability of complex digital systems during the early design stages. More specifically, techniques addressing hardware accelerators (i.e., FPGAs and GPUs), microprocessors and full systems are discussed. All developed methodologies are presented in conjunction with their application to real-world use cases belonging to different computational domains

    書き換え可能なゲートアレイを用いた無作為抽出法に基づく実時間画像処理に関する研究

    Get PDF
    長崎大学学位論文 学位記番号:博(工)甲第53号 学位授与年月日:平成30年3月20日Nagasaki University (長崎大学)課程博

    Memory Safety Acceleration on RISC-V for C Programming Language

    Full text link
    Memory corruption vulnerabilities can lead to memory attacks. Three of the top ten most dangerous weaknesses in computer security are memory-related. Memory attack is one of a computer system’s oldest but everlasting problems. Companies and the government lost billions of dollars due to memory security breaches. Memory safety is paramount to securing memory systems. Pointer-based memory safety protection has been shown as a promising solution covering both out-of-bounds and use-after-free errors. However, pointer-based memory safety relies on additional information (metadata) to check validity when a pointer is dereferenced. Such operations on the metadata introduce significant performance overhead to the system. Existing hardware/software implementations are primarily limited to proprietary closed-source microprocessors, simulation-only studies, or require changes to the input source code. In order to provide the need for memory security, we created a memory-safe RISC-V platform with low-performance overhead. In this thesis, a novel hardware/software co-design methodology consisting of a RISC-V based processor is extended with new instructions and microarchitecture enhancements, enabling complete memory safety in the C programming language and faster memory safety checks. Furthermore, a compiler is instrumented to provide security operations considering the changes to the processor. Moreover, a design exploration framework is proposed to provide an in-depth search for optimal hardware/software configuration for application-specific workloads regarding performance overhead, security coverage, area cost, and critical path latency. The entire system is realized by enhancing a RISC-V Rocket-chip system-on-chip (SoC). The resultant processor SoC is implemented on an FPGA and evaluated with applications from SPEC 2006 (for generic applications), MiBench (for embedded applications), and Olden benchmark suites for performance. The system, including the RISC-V CHISEL, compiler, profiling and analysis tool-chain, is fully available and open-source to the public

    A Reconfigurable Processor for Heterogeneous Multi-Core Architectures

    Get PDF
    A reconfigurable processor is a general-purpose processor coupled with an FPGA-like reconfigurable fabric. By deploying application-specific accelerators, performance for a wide range of applications can be improved with such a system. In this work concepts are designed for the use of reconfigurable processors in multi-tasking scenarios and as part of multi-core systems

    Design methodologies and architectures of hardware-based evolutionary algorithms for aerospace optimisation applications on FPGAS

    Get PDF
    This thesis is a study of new design methods for allowing evolutionary algorithms to be more effectively utilised in aerospace optimisation applications where computation needs are high and computation platform space may be restrictive. It examines the applicability of special hardware computational platforms known as field programmable gate arrays and shows that with the right implementation methods they can offer significant benefits. This research is a step forward towards the advancement of efficient and highly automated aircraft systems for meeting compact physical constraints in aerospace platforms and providing effective performance speedups over traditional methods
    corecore