103 research outputs found

    Context-dependent fusion with application to landmine detection.

    Get PDF
    Traditional machine learning and pattern recognition systems use a feature descriptor to describe the sensor data and a particular classifier (also called expert or learner ) to determine the true class of a given pattern. However, for complex detection and classification problems, involving data with large intra-class variations and noisy inputs, no single source of information can provide a satisfactory solution. As a result, combination of multiple classifiers is playing an increasing role in solving these complex pattern recognition problems, and has proven to be viable alternative to using a single classifier. In this thesis we introduce a new Context-Dependent Fusion (CDF) approach, We use this method to fuse multiple algorithms which use different types of features and different classification methods on multiple sensor data. The proposed approach is motivated by the observation that there is no single algorithm that can consistently outperform all other algorithms. In fact, the relative performance of different algorithms can vary significantly depending on several factions such as extracted features, and characteristics of the target class. The CDF method is a local approach that adapts the fusion method to different regions of the feature space. The goal is to take advantages of the strengths of few algorithms in different regions of the feature space without being affected by the weaknesses of the other algorithms and also avoiding the loss of potentially valuable information provided by few weak classifiers by considering their output as well. The proposed fusion has three main interacting components. The first component, called Context Extraction, partitions the composite feature space into groups of similar signatures, or contexts. Then, the second component assigns an aggregation weight to each detector\u27s decision in each context based on its relative performance within the context. The third component combines the multiple decisions, using the learned weights, to make a final decision. For Context Extraction component, a novel algorithm that performs clustering and feature discrimination is used to cluster the composite feature space and identify the relevant features for each cluster. For the fusion component, six different methods were proposed and investigated. The proposed approached were applied to the problem of landmine detection. Detection and removal of landmines is a serious problem affecting civilians and soldiers worldwide. Several detection algorithms on landmine have been proposed. Extensive testing of these methods has shown that the relative performance of different detectors can vary significantly depending on the mine type, geographical site, soil and weather conditions, and burial depth, etc. Therefore, multi-algorithm, and multi-sensor fusion is a critical component in land mine detection. Results on large and diverse real data collections show that the proposed method can identify meaningful and coherent clusters and that different expert algorithms can be identified for the different contexts. Our experiments have also indicated that the context-dependent fusion outperforms all individual detectors and several global fusion methods

    A generic framework for context-dependent fusion with application to landmine detection.

    Get PDF
    For complex detection and classification problems, involving data with large intra-class variations and noisy inputs, no single source of information can provide a satisfactory solution. As a result, combination of multiple classifiers is playing an increasing role in solving these complex pattern recognition problems, and has proven to be a viable alternative to using a single classifier. Over the past few years, a variety of schemes have been proposed for combining multiple classifiers. Most of these were global as they assign a degree of worthiness to each classifier, that is averaged over the entire training data. This may not be the optimal way to combine the different experts since the behavior of each one may not be uniform over the different regions of the feature space. To overcome this issue, few local methods have been proposed in the last few years. Local fusion methods aim to adapt the classifiers\u27 worthiness to different regions of the feature space. First, they partition the input samples. Then, they identify the best classifier for each partition and designate it as the expert for that partition. Unfortunately, current local methods are either computationally expensive and/or perform these two tasks independently of each other. However, feature space partition and algorithm selection are not independent and their optimization should be simultaneous. In this dissertation, we introduce a new local fusion approach, called Context Extraction for Local Fusion (CELF). CELF was designed to adapt the fusion to different regions of the feature space. It takes advantage of the strength of the different experts and overcome their limitations. First, we describe the baseline CELF algorithm. We formulate a novel objective function that combines context identification and multi-algorithm fusion criteria into a joint objective function. The context identification component thrives to partition the input feature space into different clusters (called contexts), while the fusion component thrives to learn the optimal fusion parameters within each cluster. Second, we propose several variations of CELF to deal with different applications scenario. In particular, we propose an extension that includes a feature discrimination component (CELF-FD). This version is advantageous when dealing with high dimensional feature spaces and/or when the number of features extracted by the individual algorithms varies significantly. CELF-CA is another extension of CELF that adds a regularization term to the objective function to introduce competition among the clusters and to find the optimal number of clusters in an unsupervised way. CELF-CA starts by partitioning the data into a large number of small clusters. As the algorithm progresses, adjacent clusters compete for data points, and clusters that lose the competition gradually become depleted and vanish. Third, we propose CELF-M that generalizes CELF to support multiple classes data sets. The baseline CELF and its extensions were formulated to use linear aggregation to combine the output of the different algorithms within each context. For some applications, this can be too restrictive and non-linear fusion may be needed. To address this potential drawback, we propose two other variations of CELF that use non-linear aggregation. The first one is based on Neural Networks (CELF-NN) and the second one is based on Fuzzy Integrals (CELF-FI). The latter one has the desirable property of assigning weights to subsets of classifiers to take into account the interaction between them. To test a new signature using CELF (or its variants), each algorithm would extract its set of features and assigns a confidence value. Then, the features are used to identify the best context, and the fusion parameters of this context are used to fuse the individual confidence values. For each variation of CELF, we formulate an objective function, derive the necessary conditions to optimize it, and construct an iterative algorithm. Then we use examples to illustrate the behavior of the algorithm, compare it to global fusion, and highlight its advantages. We apply our proposed fusion methods to the problem of landmine detection. We use data collected using Ground Penetration Radar (GPR) and Wideband Electro -Magnetic Induction (WEMI) sensors. We show that CELF (and its variants) can identify meaningful and coherent contexts (e.g. mines of same type, mines buried at the same site, etc.) and that different expert algorithms can be identified for the different contexts. In addition to the land mine detection application, we apply our approaches to semantic video indexing, image database categorization, and phoneme recognition. In all applications, we compare the performance of CELF with standard fusion methods, and show that our approach outperforms all these methods

    Landmine detection using semi-supervised learning.

    Get PDF
    Landmine detection is imperative for the preservation of both military and civilian lives. While landmines are easy to place, they are relatively difficult to remove. The classic method of detecting landmines was by using metal-detectors. However, many present-day landmines are composed of little to no metal, necessitating the use of additional technologies. One of the most successful and widely employed technologies is Ground Penetrating Radar (GPR). In order to maximize efficiency of GPR-based landmine detection and minimize wasted effort caused by false alarms, intelligent detection methods such as machine learning are used. Many sophisticated algorithms are developed and employed to accomplish this. One such successful algorithm is K Nearest Neighbors (KNN) classification. Most of these algorithms, including KNN, are based on supervised learning, which requires labeling of known data. This process can be tedious. Semi-supervised learning leverages both labeled and unlabeled data in the training process, alleviating over-dependency on labeling. Semi-supervised learning has several advantages over supervised learning. For example, it applies well to large datasets because it uses the topology of unlabeled data to classify test data. Also, by allowing unlabeled data to influence classification, one set of training data can be adopted into varying test environments. In this thesis, we explore a graph-based learning method known as Label Propagation as an alternative classifier to KNN classification, and validate its use on vehicle-mounted and handheld GPR systems

    Ensemble learning method for hidden markov models.

    Get PDF
    For complex classification systems, data are gathered from various sources and potentially have different representations. Thus, data may have large intra-class variations. In fact, modeling each data class with a single model might lead to poor generalization. The classification error can be more severe for temporal data where each sample is represented by a sequence of observations. Thus, there is a need for building a classification system that takes into account the variations within each class in the data. This dissertation introduces an ensemble learning method for temporal data that uses a mixture of Hidden Markov Model (HMM) classifiers. We hypothesize that the data are generated by K models, each of which reacts a particular trend in the data. Model identification could be achieved through clustering in the feature space or in the parameters space. However, this approach is inappropriate in the context of sequential data. The proposed approach is based on clustering in the log-likelihood space, and has two main steps. First, one HMM is fit to each of the N individual sequences. For each fitted model, we evaluate the log-likelihood of each sequence. This will result in an N-by-N log-likelihood distance matrix that will be partitioned into K groups using a relational clustering algorithm. In the second step, we learn the parameters of one HMM per group. We propose using and optimizing various training approaches for the different K groups depending on their size and homogeneity. In particular, we investigate the maximum likelihood (ML), the minimum classification error (MCE) based discriminative, and the Variational Bayesian (VB) training approaches. Finally, to test a new sequence, its likelihood is computed in all the models and a final confidence value is assigned by combining the multiple models outputs using a decision level fusion method such as an artificial neural network or a hierarchical mixture of experts. Our approach was evaluated on two real-world applications: (1) identification of Cardio-Pulmonary Resuscitation (CPR) scenes in video simulating medical crises; and (2) landmine detection using Ground Penetrating Radar (GPR). Results on both applications show that the proposed method can identify meaningful and coherent HMM mixture components that describe different properties of the data. Each HMM mixture component models a group of data that share common attributes. The results indicate that the proposed method outperforms the baseline HMM that uses one model for each class in the data

    Nuclear quadrupole resonance system for landmine detection in Antioquia

    Get PDF
    Colombia ranks second in the world by number of victims from landmines; and in Colombia, Antioquia is the most affected department. As most landmines in Antioquia do not have metallic parts, metal detectors became useless, however, in most of those mines, the explosive mixture includes ammonium nitrate, and thus a system able to detect this compound could help to locate the mines. On the other side, nuclear quadrupole resonance (NQR) is a spectroscopic technique that allows the detection of some compounds very specifically. Thus, this work had the purpose of developing a system for remote sensing of ammonium nitrate in landmines by NQR. To achieve this goal, a portable NQR device was constructed as well as a probe, capable of sending radiofrequency pulses at the resonance frequency of ammonium nitrate, and capable of picking up the NQR signal after excitation. The manufactured system was tested against some environmental factors, concluding that the most affecting ones are soil conductivity and landmine shape. After achieving a functional system, a classifier based on spectral descriptors was trained, using data acquired with and without ammonium nitrate. Experimental results showed that the proposed classifier (an ensemble of 20 decision trees) had better performance, in terms of the area under the receiver operating characteristic curve, than the classical solution on the literature (which relies only on signal intensity). A final test validated the performance of the system, which detected four of five buried targets in an area of 2 x 1,6 m, having 3 false alarms.Resumen: Colombia es el segundo país con mayor número de víctimas por minas antipersona (MAP) en el mundo, siendo Antioquia es el departamento más afectado. La mayoría de las MAP en Antioquia contienen nitrato de amonio y la resonancia nuclear en cuadrupolo (NQR) es una técnica espectroscópica que permite detectar compuestos de forma muy específica. Así, este trabajo tiene el propósito desarrollar un sistema de NQR para la detección remota de nitrato de amonio en MAP. Para lograr este objetivo, se construyó un equipo portable de NQR, así como un inductor capaz de enviar pulsos a la frecuencia de resonancia del nitrato de amonio y de detectar la señal de NQR. El sistema construido fue probado en diferentes condiciones ambientales y se encontró que los factores que más lo afectan son la conductividad del suelo y la forma de la mina. Luego de lograr un sistema portable y funcional, se entrenó un clasificador basado en descriptores espectrales usando datos adquiridos con y sin nitrato de amonio. A partir de resultados experimentales se encontró que el clasificador entrenado (un ensamble de 20 árboles de decisión) tiene mejor desempeño, en términos del área bajo la curva de característica operativa del receptor, en comparación con la solución extendida en la literatura (que se basa únicamente en la intensidad de la señal). Una última prueba validó el desempeño del sistema, que fue capaz de detectar 5 muestras de nitrato de amonio ocultas en un área de 2 x 1,6 m, con 3 falsas alarmas.Doctorad

    Investigating Key Techniques to Leverage the Functionality of Ground/Wall Penetrating Radar

    Get PDF
    Ground penetrating radar (GPR) has been extensively utilized as a highly efficient and non-destructive testing method for infrastructure evaluation, such as highway rebar detection, bridge decks inspection, asphalt pavement monitoring, underground pipe leakage detection, railroad ballast assessment, etc. The focus of this dissertation is to investigate the key techniques to tackle with GPR signal processing from three perspectives: (1) Removing or suppressing the radar clutter signal; (2) Detecting the underground target or the region of interest (RoI) in the GPR image; (3) Imaging the underground target to eliminate or alleviate the feature distortion and reconstructing the shape of the target with good fidelity. In the first part of this dissertation, a low-rank and sparse representation based approach is designed to remove the clutter produced by rough ground surface reflection for impulse radar. In the second part, Hilbert Transform and 2-D Renyi entropy based statistical analysis is explored to improve RoI detection efficiency and to reduce the computational cost for more sophisticated data post-processing. In the third part, a back-projection imaging algorithm is designed for both ground-coupled and air-coupled multistatic GPR configurations. Since the refraction phenomenon at the air-ground interface is considered and the spatial offsets between the transceiver antennas are compensated in this algorithm, the data points collected by receiver antennas in time domain can be accurately mapped back to the spatial domain and the targets can be imaged in the scene space under testing. Experimental results validate that the proposed three-stage cascade signal processing methodologies can improve the performance of GPR system
    corecore