1,587 research outputs found

    Optimizing the beacon exchange rate for proactive autonomic configuration in ubiquitous MANETs

    Get PDF
    Proactive self-configuration is indispensable for MANETs like ubiquitous sensor networks (USNs), as component devices of the network are usually exposed to natural or man-made disasters due to the hostile deployment and ad hoc nature of the USNs. Network state beacons (NSBs) are exchanged among the key nodes of the network for crucial and effective monitoring of the network for steady state operation. The rate of beacon exchange (F/sub E/) and its contents, define the time and nature of the proactive action. Therefore it is very important to optimize these parameters to tune the functional response of the USN. This paper presents a comprehensive model for monitoring and proactively reconfiguring the network by optimizing the F/sub E/. The results confirm the improved throughput while maintaining QoS over longer periods of network operation

    An annealing approach to router nodes placement problem in wireless mesh networks

    Get PDF
    Mesh router nodes placement is a central problem to Wireless Mesh Networks (WMNs). An efficient placement of mesh router nodes is indispensable for achieving network performance in terms of both network connectivity and user coverage. Unfortunately the problem is computationally hard to solve to optimality even for small deployment areas and a small number of mesh router nodes. As WMNs are becoming an important networking infrastructure for providing cost-efficient broadband wireless connectivity, researchers are paying attention to the resolution of the mesh router placement problem through heuristic approaches in order to achieve near optimal, yet high quality solutions in reasonable time. In this work we propose and evaluate a Simulated Annealing (SA) approach to placement of mesh router nodes in WMNs. The optimization model uses two maximization objectives, namely, the size of the giant component in the network and user coverage. Both objectives are important to deployment of WMNs; the former is crucial to achieve network connectivity while the later is an indicator of the QoS in WMNs. The SA approach distinguishes for its simplicity yet its policy of neighborhood exploration allows to reach promising areas of the solution space where quality solutions could be found. We have experimentally evaluated the SA algorithm through a benchmark of generated instances, varying from small to large size, and capturing different characteristics of WMNs such as topological placements of mesh clients. The experimental results showed the efficiency of the annealing approach for the placement of mesh router nodes in WMNs.Peer ReviewedPostprint (published version

    Co-Optimization of Communication, Motion and Sensing in Mobile Robotic Operations

    Get PDF
    In recent years, there has been considerable interest in wireless sensor networks and networked robotic systems. In order to achieve the full potential of such systems, integrative approaches that design the communication, navigation and sensing aspects of the systems simultaneously are needed. However, most of the existing work in the control and robotic communities uses over-simplified disk models or path-loss-only models to characterize the communication in the network, while most of the work in networkingand communication communities does not fully explore the benefits of motion.This dissertation thus focuses on co-optimizing these three aspects simultaneously in realistic communication environments that experience path loss, shadowing and multi-path fading. We show how to integrate the probabilistic channel prediction framework, which allows the robots to predict the channel quality at unvisited locations, into the co-optimization design. In particular, we consider four different scenarios: 1) robotic routerformation, 2) communication and motion energy co-optimization along a pre-defined trajectory, 3) communication and motion energy co-optimization with trajectory planning, and 4) clustering and path planning strategies for robotic data collection. Our theoretical, simulation and experimental results show that the proposed framework considerably outperforms the cases where the communication, motion and sensing aspects of the system are optimized separately, indicating the necessity of co-optimization. They furthershow the significant benefits of using realistic channel models, as compared to the case of using over-simplified disk models

    Green Saudi National Fibre Network (SNFN)

    Get PDF
    In 2015, there were more than 21 Million active users of the Internet in Saudi Arabia. In the present paper, we consider minimizing the power consumption of the Saudi National Fibre Network (SNFN) by formulating the problem as a mixed integer linear programming (MILP) model. Firstly, we optimize the location of single or multiple data centres in the SNFN under a traffic profile based on a gravity model where the production rate and attractiveness of each node is proportional to the population of that node. We evaluate the network power consumption considering three scenarios of data centre locations. The MILP model results show that identifying the optimum data centre locations can save up to 53% of the network power consumption compared to the random data centre locations. Secondly, we optimize the SNFN physical topology considering different data centers locations. Moreover, the model results show that optimizing the network physical topology can save up to 76% of the total power consumption compared to the current topology
    • …
    corecore