50,022 research outputs found

    A Novel Workload Allocation Strategy for Batch Jobs

    Get PDF
    The distribution of computational tasks across a diverse set of geographically distributed heterogeneous resources is a critical issue in the realisation of true computational grids. Conventionally, workload allocation algorithms are divided into static and dynamic approaches. Whilst dynamic approaches frequently outperform static schemes, they usually require the collection and processing of detailed system information at frequent intervals - a task that can be both time consuming and unreliable in the real-world. This paper introduces a novel workload allocation algorithm for optimally distributing the workload produced by the arrival of batches of jobs. Results show that, for the arrival of batches of jobs, this workload allocation algorithm outperforms other commonly used algorithms in the static case. A hybrid scheduling approach (using this workload allocation algorithm), where information about the speed of computational resources is inferred from previously completed jobs, is then introduced and the efficiency of this approach demonstrated using a real world computational grid. These results are compared to the same workload allocation algorithm used in the static case and it can be seen that this hybrid approach comprehensively outperforms the static approach

    FastDeepIoT: Towards Understanding and Optimizing Neural Network Execution Time on Mobile and Embedded Devices

    Full text link
    Deep neural networks show great potential as solutions to many sensing application problems, but their excessive resource demand slows down execution time, pausing a serious impediment to deployment on low-end devices. To address this challenge, recent literature focused on compressing neural network size to improve performance. We show that changing neural network size does not proportionally affect performance attributes of interest, such as execution time. Rather, extreme run-time nonlinearities exist over the network configuration space. Hence, we propose a novel framework, called FastDeepIoT, that uncovers the non-linear relation between neural network structure and execution time, then exploits that understanding to find network configurations that significantly improve the trade-off between execution time and accuracy on mobile and embedded devices. FastDeepIoT makes two key contributions. First, FastDeepIoT automatically learns an accurate and highly interpretable execution time model for deep neural networks on the target device. This is done without prior knowledge of either the hardware specifications or the detailed implementation of the used deep learning library. Second, FastDeepIoT informs a compression algorithm how to minimize execution time on the profiled device without impacting accuracy. We evaluate FastDeepIoT using three different sensing-related tasks on two mobile devices: Nexus 5 and Galaxy Nexus. FastDeepIoT further reduces the neural network execution time by 48%48\% to 78%78\% and energy consumption by 37%37\% to 69%69\% compared with the state-of-the-art compression algorithms.Comment: Accepted by SenSys '1
    • …
    corecore