200 research outputs found

    Self-organized crowd dynamics : research on earthquake emergency response patterns of drill-trained individuals based on GIS and multi-agent systems methodology

    Get PDF
    Predicting evacuation patterns is useful in emergency management situations such as an earthquake. To find out how pre-trained individuals interact with one another to achieve their own goal to reach the exit as fast as possible firstly, we investigated urban people’s evacuation behavior under earthquake disaster conditions, established crowd response rules in emergencies, and described the drill strategy and exit familiarity quantitatively through a cellular automata model. By setting different exit familiarity ratios, simulation experiments under different strategies were conducted to predict people’s reactions before an emergency. The corresponding simulation results indicated that the evacuees’ training level could affect a multi-exit zone’s evacuation pattern and clearance time. Their exit choice preferences may disrupt the exit options’ balance, leading to congestion in some of the exits. Secondly, due to people’s rejection of long distances, congestion, and unfamiliar exits, some people would hesitant about the evacuation direction during the evacuation process. This hesitation would also significantly reduce the overall evacuation efficiency. Finally, taking a community in Zhuhai City, China, as an example, put forward the best urban evacuation drill strategy. The quantitative relation between exit familiar level and evacuation efficiency was obtained. The final results showed that the optimized evacuation plan could improve evacuation’s overall efficiency through the self-organization effect. These studies may have some impact on predicting crowd behavior during evacuation and designing the evacuation plan

    Environmental effect on egress simulation

    Get PDF
    Abstract. Evacuation and egress simulations can be a useful tool for studying the effect of design decisions on the flow of agent movement. This type of simulation can be used to determine before hand the effect of design decisions and enable exploration of potential improvements. In this work, we study at how agent egress is affected by the environment in real world and large scale virtual environments and investigate metrics to analyze the flow. Our work differs from many evacuation systems in that we support grouping restrictions between agents (e.g., families or other social groups traveling together), and model scenarios with multiple modes of transportation with physically realistic dynamics (e.g., individuals walk from a building to their own cars and leave only when all people in the group arrive).

    Agent-Based Simulation and Analysis of Human Behavior towards Evacuation Time Reduction

    Get PDF
    Human factors play a significant part in the time taken to evacuate following an emergency. An agent-based simulation, using the Prometheus methodology (SEEP 1.5), has been developed to study the complex behavior of human (the ‘agents’) in high-rise buildings evacuations. In the case of hostel evacuations, simulation results show that pre-evacuation phase takes 60.4% of Total Evacuation Time (TET). The movement phase (including queuing time) only takes 39.6% of TET. From sensitivity analysis, it can be shown that a reduction in TET by 41.2% can be achieved by improving the recognition phase. Exit signs have been used as smart agents. Expanded Ant Colony Optimization (ACO) was used to determine the feasible evacuation routes. Both the ‘familiarity of environment’ wayfinding method, which is the most natural method, and the ACO wayfinding, have been simulated and comparisons made. In scenario 1, where there were no obstacles, both methods achieved the same TET. However, in scenario 2, where an obstacle was present, the TET for the ACO wayfinding method was 21.6% shorter than that for the ‘familiarity’ wayfinding method

    An operational research-based integrated approach for mass evacuation planning of a city

    Get PDF
    Large-scale disasters are constantly occurring around the world, and in many cases evacuation of regions of city is needed. ‘Operational Research/Management Science’ (OR/MS) has been widely used in emergency planning for over five decades. Warning dissemination, evacuee transportation and shelter management are three ‘Evacuation Support Functions’ (ESF) generic to many hazards. This thesis has adopted a case study approach to illustrate the importance of integrated approach of evacuation planning and particularly the role of OR/MS models. In the warning dissemination phase, uncertainty in the household’s behaviour as ‘warning informants’ has been investigated along with uncertainties in the warning system. An agentbased model (ABM) was developed for ESF-1 with households as agents and ‘warning informants’ behaviour as the agent behaviour. The model was used to study warning dissemination effectiveness under various conditions of the official channel. In the transportation phase, uncertainties in the household’s behaviour such as departure time (a function of ESF-1), means of transport and destination have been. Households could evacuate as pedestrians, using car or evacuation buses. An ABM was developed to study the evacuation performance (measured in evacuation travel time). In this thesis, a holistic approach for planning the public evacuation shelters called ‘Shelter Information Management System’ (SIMS) has been developed. A generic allocation framework of was developed to available shelter capacity to the shelter demand by considering the evacuation travel time. This was formulated using integer programming. In the sheltering phase, the uncertainty in household shelter choices (either nearest/allocated/convenient) has been studied for its impact on allocation policies using sensitivity analyses. Using analyses from the models and detailed examination of household states from ‘warning to safety’, it was found that the three ESFs though sequential in time, however have lot of interdependencies from the perspective of evacuation planning. This thesis has illustrated an OR/MS based integrated approach including and beyond single ESF preparedness. The developed approach will help in understanding the inter-linkages of the three evacuation phases and preparing a multi-agency-based evacuation planning evacuatio

    Evacuation of Children:Focusing on daycare centers and elementary schools

    Get PDF

    Role of opinion sharing on the emergency evacuation dynamics

    Get PDF
    Emergency evacuation is a critical research topic and any improvement to the existing evacuation models will help in improving the safety of the evacuees. Currently, there are evacuation models that have either an accurate movement model or a sophisticated decision model. Individuals in a crowd tend to share and propagate their opinion. This opinion sharing part is either implicitly modeled or entirely overlooked in most of the existing models. Thus, one of the overarching goal of this research is to the study the effect of opinion evolution through an evacuating crowd. First, the opinion evolution in a crowd was modeled mathematically. Next, the results from the analytical model were validated with a simulation model having a simple motion model. To improve the fidelity of the evacuation model, a more realistic movement and decision model were incorporated and the effect of opinion sharing on the evacuation dynamics was studied extensively. Further, individuals with strong inclination towards particular route were introduced and their effect on overall efficiency was studied. Current evacuation guidance algorithms focuses on efficient crowd evacuation. The method of guidance delivery is generally overlooked. This important gap in guidance delivery is addressed next. Additionally, a virtual reality based immersive experiment is designed to study factors affecting individuals\u27 decision making during emergency evacuation

    Multi-scale Models for Transportation Systems Under Emergency Conditions

    Get PDF
    The purpose of this study is to investigate human behavior in emergencies. More specifically, agent-based simulation and social force models were developed to examine the impact of various human and environmental factors on the efficiency of the evacuation process, through a series of case studies. The independent variables of the case studies include the number of exits, the number of passengers, the evacuation policies, and instructions, as well as the queue configuration and wall separators. The results revealed the location of the exits, number of exits, evacuation strategies, and group behaviors all significantly impact the total time of the evacuation. For the queue configuration, short aisles lower infection spread when rope separators were used. The findings provide new insights in designing layout, planning, practice, and training strategies for improving the effectiveness of the pedestrian evacuation process under emergency

    Adaptive cell-based evacuation systems for leader-follower crowd evacuation

    Get PDF
    The challenge of controlling crowd movement at large events expands not only to the realm of emergency evacuations but also to improving non-critical conditions related to operational efficiency and comfort. In both cases, it becomes necessary to develop adaptive crowd motion control systems. In particular, adaptive cell-based crowd evacuation systems dynamically generate exit-choice recommendations favoring a coordinated group dynamic that improves safety and evacuation time. We investigate the viability of using this mechanism to develop a ‘‘leader-follower’’ evacuation system in which a trained evacuation staff guides evacuees safely to the exit gates. To validate the proposal, we use a simulation–optimization framework integrating microscopic simulation. Evacuees’ behavior has been modeled using a three-layered architecture that includes eligibility, exit-choice changing, and exit-choice models, calibrated with hypothetical-choice experiments. As a significant contribution of this work, the proposed behavior models capture the influence of leaders on evacuees, which is translated into exitchoice decisions and the adaptation of speed. This influence can be easily modulated to evaluate the evacuation efficiency under different evacuation scenarios and evacuees’ behavior profiles. When measuring the efficiency of the evacuation processes, particular attention has been paid to safety by using pedestrian Macroscopic Fundamental Diagrams (p-MFD), which model the crowd movement dynamics from a macroscopic perspective. The spatiotemporal view of the evacuation performance in the form of crowd-pressure vs. density values allowed us to evaluate and compare safety in different evacuation scenarios reasonably and consistently. Experimental results confirm the viability of using adaptive cell-based crowd evacuation systems as a guidance tool to be used by evacuation staff to guide evacuees. Interestingly, we found that evacuation staff motion speed plays a crucial role in balancing egress time and safety. Thus, it is expected that by instructing evacuation staff to move at a predefined speed, we can reach the desired balance between evacuation time, accident probability, and comfort

    e-Sanctuary: open multi-physics framework for modelling wildfire urban evacuation

    Get PDF
    The number of evacuees worldwide during wildfire keep rising, year after year. Fire evacuations at the wildland-urban interfaces (WUI) pose a serious challenge to fire and emergency services and are a global issue affecting thousands of communities around the world. But to date, there is a lack of comprehensive tools able to inform, train or aid the evacuation response and the decision making in case of wildfire. The present work describes a novel framework for modelling wildfire urban evacuations. The framework is based on multi-physics simulations that can quantify the evacuation performance. The work argues that an integrated approached requires considering and integrating all three important components of WUI evacuation, namely: fire spread, pedestrian movement, and traffic movement. The report includes a systematic review of each model component, and the key features needed for the integration into a comprehensive toolkit
    • …
    corecore