3,560 research outputs found

    Computational Discovery of Gene Regulatory Binding Motifs: A Bayesian Perspective

    Get PDF
    The Bayesian approach together with Markov chain Monte Carlo techniques has provided an attractive solution to many important bioinformatics problems such as multiple sequence alignment, microarray analysis and the discovery of gene regulatory binding motifs. The employment of such methods and, more broadly, explicit statistical modeling, has revolutionized the field of computational biology. After reviewing several heuristics-based computational methods, this article presents a systematic account of Bayesian formulations and solutions to the motif discovery problem. Generalizations are made to further enhance the Bayesian approach. Motivated by the need of a speedy algorithm, we also provide a perspective of the problem from the viewpoint of optimizing a scoring function. We observe that scoring functions resulting from proper posterior distributions, or approximations to such distributions, showed the best performance and can be used to improve upon existing motif-finding programs. Simulation analyses and a real-data example are used to support our observation

    Highly comparative feature-based time-series classification

    Full text link
    A highly comparative, feature-based approach to time series classification is introduced that uses an extensive database of algorithms to extract thousands of interpretable features from time series. These features are derived from across the scientific time-series analysis literature, and include summaries of time series in terms of their correlation structure, distribution, entropy, stationarity, scaling properties, and fits to a range of time-series models. After computing thousands of features for each time series in a training set, those that are most informative of the class structure are selected using greedy forward feature selection with a linear classifier. The resulting feature-based classifiers automatically learn the differences between classes using a reduced number of time-series properties, and circumvent the need to calculate distances between time series. Representing time series in this way results in orders of magnitude of dimensionality reduction, allowing the method to perform well on very large datasets containing long time series or time series of different lengths. For many of the datasets studied, classification performance exceeded that of conventional instance-based classifiers, including one nearest neighbor classifiers using Euclidean distances and dynamic time warping and, most importantly, the features selected provide an understanding of the properties of the dataset, insight that can guide further scientific investigation

    Transcription Factor-DNA Binding Via Machine Learning Ensembles

    Full text link
    We present ensemble methods in a machine learning (ML) framework combining predictions from five known motif/binding site exploration algorithms. For a given TF the ensemble starts with position weight matrices (PWM's) for the motif, collected from the component algorithms. Using dimension reduction, we identify significant PWM-based subspaces for analysis. Within each subspace a machine classifier is built for identifying the TF's gene (promoter) targets (Problem 1). These PWM-based subspaces form an ML-based sequence analysis tool. Problem 2 (finding binding motifs) is solved by agglomerating k-mer (string) feature PWM-based subspaces that stand out in identifying gene targets. We approach Problem 3 (binding sites) with a novel machine learning approach that uses promoter string features and ML importance scores in a classification algorithm locating binding sites across the genome. For target gene identification this method improves performance (measured by the F1 score) by about 10 percentage points over the (a) motif scanning method and (b) the coexpression-based association method. Top motif outperformed 5 component algorithms as well as two other common algorithms (BEST and DEME). For identifying individual binding sites on a benchmark cross species database (Tompa et al., 2005) we match the best performer without much human intervention. It also improved the performance on mammalian TFs. The ensemble can integrate orthogonal information from different weak learners (potentially using entirely different types of features) into a machine learner that can perform consistently better for more TFs. The TF gene target identification component (problem 1 above) is useful in constructing a transcriptional regulatory network from known TF-target associations. The ensemble is easily extendable to include more tools as well as future PWM-based information.Comment: 33 page

    Interpretable Categorization of Heterogeneous Time Series Data

    Get PDF
    Understanding heterogeneous multivariate time series data is important in many applications ranging from smart homes to aviation. Learning models of heterogeneous multivariate time series that are also human-interpretable is challenging and not adequately addressed by the existing literature. We propose grammar-based decision trees (GBDTs) and an algorithm for learning them. GBDTs extend decision trees with a grammar framework. Logical expressions derived from a context-free grammar are used for branching in place of simple thresholds on attributes. The added expressivity enables support for a wide range of data types while retaining the interpretability of decision trees. In particular, when a grammar based on temporal logic is used, we show that GBDTs can be used for the interpretable classi cation of high-dimensional and heterogeneous time series data. Furthermore, we show how GBDTs can also be used for categorization, which is a combination of clustering and generating interpretable explanations for each cluster. We apply GBDTs to analyze the classic Australian Sign Language dataset as well as data on near mid-air collisions (NMACs). The NMAC data comes from aircraft simulations used in the development of the next-generation Airborne Collision Avoidance System (ACAS X).Comment: 9 pages, 5 figures, 2 tables, SIAM International Conference on Data Mining (SDM) 201

    Compositional optimization of hard-magnetic phases with machine-learning models

    Full text link
    Machine Learning (ML) plays an increasingly important role in the discovery and design of new materials. In this paper, we demonstrate the potential of ML for materials research using hard-magnetic phases as an illustrative case. We build kernel-based ML models to predict optimal chemical compositions for new permanent magnets, which are key components in many green-energy technologies. The magnetic-property data used for training and testing the ML models are obtained from a combinatorial high-throughput screening based on density-functional theory calculations. Our straightforward choice of describing the different configurations enables the subsequent use of the ML models for compositional optimization and thereby the prediction of promising substitutes of state-of-the-art magnetic materials like Nd2_2Fe14_{14}B with similar intrinsic hard-magnetic properties but a lower amount of critical rare-earth elements.Comment: 12 pages, 6 figure
    corecore