3,551 research outputs found

    Advances in Deep Learning Algorithms for Agricultural Monitoring and Management

    Get PDF
    This study examines the transformative role of deep learning algorithms in agricultural monitoring and management. Deep learning has shown remarkable progress in predicting crop yields based on historical weather, soil, and crop data, thereby enabling optimized planting and harvesting strategies. In disease and pest detection, image recognition technologies such as Convolutional Neural Networks (CNNs) can analyze high-resolution images of crops to identify early signs of diseases or pest infestations, allowing for swift and effective interventions. In the context of precision agriculture, these advanced techniques offer resource efficiency by enabling targeted treatments within specific field areas, significantly reducing waste. The paper also sheds light on the application of deep learning in analyzing vast amounts of remote sensing and satellite imagery data, aiding in real-time monitoring of crop growth, soil moisture, and other critical environmental factors. In the face of climate change, advanced algorithms provide valuable insights into its potential impact on agriculture, thereby aiding the formulation of effective adaptation strategies. Automated harvesting and sorting, facilitated by robotics powered by deep learning, are also investigated, as they promise increased efficiency and reduced labor costs. Moreover, machine learning models have shown potential in optimizing the entire agricultural supply chain, ensuring minimal waste and optimum product quality. Lastly, the study highlights the power of deep learning in integrating multi-source data, from weather stations to satellites, to form comprehensive monitoring systems that allow real-time decision-making

    Applications of Emerging Smart Technologies in Farming Systems: A Review

    Get PDF
    The future of farming systems depends mainly on adopting innovative intelligent and smart technologies The agricultural sector s growth and progress are more critical to human survival than any other industry Extensive multidisciplinary research is happening worldwide for adopting intelligent technologies in farming systems Nevertheless when it comes to handling realistic challenges in making autonomous decisions and predictive solutions in farming applications of Information Communications Technologies ICT need to be utilized more Information derived from data worked best on year-to-year outcomes disease risk market patterns prices or customer needs and ultimately facilitated farmers in decision-making to increase crop and livestock production Innovative technologies allow the analysis and correlation of information on seed quality soil types infestation agents weather conditions etc This review analysis highlights the concept methods and applications of various futuristic cognitive innovative technologies along with their critical roles played in different aspects of farming systems like Artificial Intelligence AI IoT Neural Networks utilization of unmanned vehicles UAV Big data analytics Blok chain technology et

    Actuators and sensors for application in agricultural robots: A review

    Get PDF
    In recent years, with the rapid development of science and technology, agricultural robots have gradually begun to replace humans, to complete various agricultural operations, changing traditional agricultural production methods. Not only is the labor input reduced, but also the production efficiency can be improved, which invariably contributes to the development of smart agriculture. This paper reviews the core technologies used for agricultural robots in non-structural environments. In addition, we review the technological progress of drive systems, control strategies, end-effectors, robotic arms, environmental perception, and other related systems. This research shows that in a non-structured agricultural environment, using cameras and light detection and ranging (LiDAR), as well as ultrasonic and satellite navigation equipment, and by integrating sensing, transmission, control, and operation, different types of actuators can be innovatively designed and developed to drive the advance of agricultural robots, to meet the delicate and complex requirements of agricultural products as operational objects, such that better productivity and standardization of agriculture can be achieved. In summary, agricultural production is developing toward a data-driven, standardized, and unmanned approach, with smart agriculture supported by actuator-driven-based agricultural robots. This paper concludes with a summary of the main existing technologies and challenges in the development of actuators for applications in agricultural robots, and the outlook regarding the primary development directions of agricultural robots in the near future

    Simulation of site-specific irrigation control strategies with sparse input data

    Get PDF
    Crop and irrigation water use efficiencies may be improved by managing irrigation application timing and volumes using physical and agronomic principles. However, the crop water requirement may be spatially variable due to different soil properties and genetic variations in the crop across the field. Adaptive control strategies can be used to locally control water applications in response to in-field temporal and spatial variability with the aim of maximising both crop development and water use efficiency. A simulation framework ‘VARIwise’ has been created to aid the development, evaluation and management of spatially and temporally varied adaptive irrigation control strategies (McCarthy et al., 2010). VARIwise enables alternative control strategies to be simulated with different crop and environmental conditions and at a range of spatial resolutions. An iterative learning controller and model predictive controller have been implemented in VARIwise to improve the irrigation of cotton. The iterative learning control strategy involves using the soil moisture response to the previous irrigation volume to adjust the applied irrigation volume applied at the next irrigation event. For field implementation this controller has low data requirements as only soil moisture data is required after each irrigation event. In contrast, a model predictive controller has high data requirements as measured soil and plant data are required at a high spatial resolution in a field implementation. Model predictive control involves using a calibrated model to determine the irrigation application and/or timing which results in the highest predicted yield or water use efficiency. The implementation of these strategies is described and a case study is presented to demonstrate the operation of the strategies with various levels of data availability. It is concluded that in situations of sparse data, the iterative learning controller performs significantly better than a model predictive controller

    Air pollution and livestock production

    Get PDF
    The air in a livestock farming environment contains high concentrations of dust particles and gaseous pollutants. The total inhalable dust can enter the nose and mouth during normal breathing and the thoracic dust can reach into the lungs. However, it is the respirable dust particles that can penetrate further into the gas-exchange region, making it the most hazardous dust component. Prolonged exposure to high concentrations of dust particles can lead to respiratory health issues for both livestock and farming staff. Ammonia, an example of a gaseous pollutant, is derived from the decomposition of nitrous compounds. Increased exposure to ammonia may also have an effect on the health of humans and livestock. There are a number of technologies available to ensure exposure to these pollutants is minimised. Through proactive means, (the optimal design and management of livestock buildings) air quality can be improved to reduce the likelihood of risks associated with sub-optimal air quality. Once air problems have taken hold, other reduction methods need to be applied utilising a more reactive approach. A key requirement for the control of concentration and exposure of airborne pollutants to an acceptable level is to be able to conduct real-time measurements of these pollutants. This paper provides a review of airborne pollution including methods to both measure and control the concentration of pollutants in livestock buildings
    • …
    corecore