800 research outputs found

    Macrobend optical sensing for pose measurement in soft robot arms

    Get PDF
    This paper introduces a pose-sensing system for soft robot arms integrating a set of macrobend stretch sensors. The macrobend sensory design in this study consists of optical fibres and is based on the notion that bending an optical fibre modulates the intensity of the light transmitted through the fibre. This sensing method is capable of measuring bending, elongation and compression in soft continuum robots and is also applicable to wearable sensing technologies, e.g. pose sensing in the wrist joint of a human hand. In our arrangement, applied to a cylindrical soft robot arm, the optical fibres for macrobend sensing originate from the base, extend to the tip of the arm, and then loop back to the base. The connectors that link the fibres to the necessary opto-electronics are all placed at the base of the arm, resulting in a simplified overall design. The ability of this custom macrobend stretch sensor to flexibly adapt its configuration allows preserving the inherent softness and compliance of the robot which it is installed on. The macrobend sensing system is immune to electrical noise and magnetic fields, is safe (because no electricity is needed at the sensing site), and is suitable for modular implementation in multi-link soft continuum robotic arms. The measurable light outputs of the proposed stretch sensor vary due to bend-induced light attenuation (macrobend loss), which is a function of the fibre bend radius as well as the number of repeated turns. The experimental study conducted as part of this research revealed that the chosen bend radius has a far greater impact on the measured light intensity values than the number of turns (if greater than five). Taking into account that the bend radius is the only significantly influencing design parameter, the macrobend stretch sensors were developed to create a practical solution to the pose sensing in soft continuum robot arms. Henceforward, the proposed sensing design was benchmarked against an electromagnetic tracking system (NDI Aurora) for validation

    Development of a fiber-based shape sensor for navigating flexible medical tools

    Get PDF
    Robot-assisted minimally invasive surgical procedure (RAMIS) is a subfield of minimally invasive surgeries with enhanced manual dexterity, manipulability, and intraoperative image guidance. In typical robotic surgeries, it is common to use rigid instruments with functional articulating tips. However, in some operations where no adequate and direct access to target anatomies is available, continuum robots can be more practical, as they provide curvilinear and flexible access. However, their inherent deformable design makes it difficult to accurately estimate their 3D shape during the operation in real-time. Despite extensive model-based research that relies on kinematics and mechanics, accurate shape sensing of continuum robots remains challenging. The state-of-the-art tracking technologies, including optical trackers, EM tracking systems, and intraoperative imaging modalities, are also unsuitable for this task, as they all have shortcomings. Optical fiber shape sensing solutions offer various advantages compared to other tracking modalities and can provide high-resolution shape measurements in real-time. However, commercially available fiber shape sensors are expensive and have limited accuracy. In this thesis, we propose two cost-effective fiber shape sensing solutions based on multiple single-mode fibers with FBG (fiber Bragg grating) arrays and eccentric FBGs. First, we present the fabrication and calibration process of two shape sensing prototypes based on multiple single-mode fibers with semi-rigid and super-elastic substrates. Then, we investigate the sensing mechanism of edge-FBGs, which are eccentric Bragg gratings inscribed off-axis in the fiber's core. Finally, we present a deep learning algorithm to model edge-FBG sensors that can directly predict the sensor's shape from its signal and does not require any calibration or shape reconstruction steps. In general, depending on the target application, each of the presented fiber shape sensing solutions can be used as a suitable tracking device. The developed fiber sensor with the semi-rigid substrate has a working channel in the middle and can accurately measure small deflections with an average tip error of 2.7 mm. The super-elastic sensor is suitable for measuring medium to large deflections, where a centimeter range tip error is still acceptable. The tip error in such super-elastic sensors is higher compared to semi-rigid sensors (9.9-16.2 mm in medium and large deflections, respectively), as there is a trade-off between accuracy and flexibility in substrate-based fiber sensors. Edge-FBG sensor, as the best performing sensing mechanism among the investigated fiber shape sensors, can achieve a tip accuracy of around 2 mm in complex shapes, where the fiber is heavily deflected. The developed edge-FBG shape sensing solution can compete with the state-of-the-art distributed fiber shape sensors that cost 30 times more

    Modeling, Sensorization and Control of Concentric-Tube Robots

    Get PDF
    Since the concept of the Concentric-Tube Robot (CTR) was proposed in 2006, CTRs have been a popular research topic in the field of surgical robotics. The unique mechanical design of this robot allows it to navigate through narrow channels in the human anatomy and operate in highly constrained environments. It is therefore likely to become the next generation of surgical robots to overcome the challenges that cannot be addressed by current technologies. In CSTAR, we have had ongoing work over the past several years aimed at developing novel techniques and technologies for CTRs. This thesis describes the contributions made in this context, focusing primarily on topics such as modeling, sensorization, and control of CTRs. Prior to this work, one of the main challenges in CTRs was to develop a kinematic model that achieves a balance between the numerical accuracy and computational efficiency for surgical applications. In this thesis, a fast kinematic model of CTRs is proposed, which can be solved at a comparatively fast rate (0.2 ms) with minimal loss of accuracy (0.1 mm) for a 3-tube CTR. A Jacobian matrix is derived based on this model, leading to the development of a real-time trajectory tracking controller for CTRs. For tissue-robot interactions, a force-rejection controller is proposed for position control of CTRs under time-varying force disturbances. In contrast to rigid-link robots, instability of position control could be caused by non-unique solutions to the forward kinematics of CTRs. This phenomenon is modeled and analyzed, resulting in design criteria that can ensure kinematic stability of a CTR in its entire workspace. Force sensing is another major difficulty for CTRs. To address this issue, commercial force/torque sensors (Nano43, ATI Industrial Automation, United States) are integrated into one of our CTR prototypes. These force/torque sensors are replaced by Fiber-Bragg Grating (FBG) sensors that are helically-wrapped and embedded in CTRs. A strain-force calculation algorithm is proposed, to convert the reflected wavelength of FBGs into force measurements with 0.1 N force resolution at 100 Hz sampling rate. In addition, this thesis reports on our innovations in prototyping drive units for CTRs. Three designs of CTR prototypes are proposed, the latest one being significantly more compact and cost efficient in comparison with most designs in the literature. All of these contributions have brought this technology a few steps closer to being used in operating rooms. Some of the techniques and technologies mentioned above are not merely limited to CTRs, but are also suitable for problems arising in other types of surgical robots, for example, for sensorizing da Vinci surgical instruments for force sensing (see Appendix A)

    Challenges of continuum robots in clinical context: a review

    Get PDF
    With the maturity of surgical robotic systems based on traditional rigid-link principles, the rate of progress slowed as limits of size and controllable degrees of freedom were reached. Continuum robots came with the potential to deliver a step change in the next generation of medical devices, by providing better access, safer interactions and making new procedures possible. Over the last few years, several continuum robotic systems have been launched commercially and have been increasingly adopted in hospitals. Despite the clear progress achieved, continuum robots still suffer from design complexity hindering their dexterity and scalability. Recent advances in actuation methods have looked to address this issue, offering alternatives to commonly employed approaches. Additionally, continuum structures introduce significant complexity in modelling, sensing, control and fabrication; topics which are of particular focus in the robotics community. It is, therefore, the aim of the presented work to highlight the pertinent areas of active research and to discuss the challenges to be addressed before the potential of continuum robots as medical devices may be fully realised

    Combining Differential Kinematics and Optical Flow for Automatic Labeling of Continuum Robots in Minimally Invasive Surgery

    Get PDF
    International audienceThe segmentation of continuum robots in medical images can be of interest for analyzing surgical procedures or for controlling them. However, the automatic segmentation of continuous and flexible shapes is not an easy task. On one hand conventional approaches are not adapted to the specificities of these instruments, such as imprecise kinematic models, and on the other hand techniques based on deep-learning showed interesting capabilities but need many manually labeled images. In this article we propose a novel approach for segmenting continuum robots on endoscopic images, which requires no prior on the instrument visual appearance and no manual annotation of images. The method relies on the use of the combination of kinematic models and differential kinematic models of the robot and the analysis of optical flow in the images. A cost function aggregating information from the acquired image, from optical flow and from robot encoders is optimized using particle swarm optimization and provides estimated parameters of the pose of the continuum instrument and a mask defining the instrument in the image. In addition a temporal consistency is assessed in order to improve stochastic optimization and reject outliers. The proposed approach has been tested for the robotic instruments of a flexible endoscopy platform both for benchtop acquisitions and an in vivo video. The results show the ability of the technique to correctly segment the instruments without a prior, and in challenging conditions. The obtained segmentation can be used for several applications, for instance for providing automatic labels for machine learning techniques

    Novel Vine-like Continuum Robot for Environmental Exploration Applications

    Get PDF
    This thesis details a new design and novel operational strategies for nature inspired, thin tendril continuum robots. Instead of taking inspiration for robot design from insects or animals, the novel approach to continuum robotics herein takes inspiration and adapts operational concepts from plant life. In particular, an innovative strategy is developed which mimics behaviors observed in vines and other climbing plants. Specifically, a tendril robot with prickles was developed and deployed to actively seek environmental contact, exploiting the mechanical advantage gained by bracing against the environment using the prickles. The resulting performance enhancements over previously developed smooth backbone tendril robot designs, and use of strategies that do not attempt to interact with the environment are empirically demonstrated with the new robot prototype. Results of further experiments suggest applications in which the new design and approach could prove useful to the scientific and wider communities

    A Motion Planning Approach to Automatic Obstacle Avoidance during Concentric Tube Robot Teleoperation

    Get PDF
    Abstract-Concentric tube robots are thin, tentacle-like devices that can move along curved paths and can potentially enable new, less invasive surgical procedures. Safe and effective operation of this type of robot requires that the robot's shaft avoid sensitive anatomical structures (e.g., critical vessels and organs) while the surgeon teleoperates the robot's tip. However, the robot's unintuitive kinematics makes it difficult for a human user to manually ensure obstacle avoidance along the entire tentacle-like shape of the robot's shaft. We present a motion planning approach for concentric tube robot teleoperation that enables the robot to interactively maneuver its tip to points selected by a user while automatically avoiding obstacles along its shaft. We achieve automatic collision avoidance by precomputing a roadmap of collision-free robot configurations based on a description of the anatomical obstacles, which are attainable via volumetric medical imaging. We also mitigate the effects of kinematic modeling error in reaching the goal positions by adjusting motions based on robot tip position sensing. We evaluate our motion planner on a teleoperated concentric tube robot and demonstrate its obstacle avoidance and accuracy in environments with tubular obstacles

    Recent developments in fibre optic shape sensing

    Get PDF
    This paper presents a comprehensive critical review of technologies used in the development of fibre optic shape sensors (FOSSs). Their operation is based on multi-dimensional bend measurements using a series of fibre optic sensors. Optical fibre sensors have experienced tremendous growth from simple bend sensors in 1980s to full three-dimensional FOSSs using multicore fibres in recent years. Following a short review of conventional contact-based shape sensor technologies, the evolution trend and sensing principles of FOSSs are presented. This paper identifies the major optical fibre technologies used for shape sensing and provides an account of the challenges and emerging applications of FOSSs in various industries such as medical robotics, industrial robotics, aerospace and mining industry
    • …
    corecore