575 research outputs found

    A framework for the near-real-time optimization of integrated oil & gas midstream processing networks

    Get PDF
    The oil and gas industry plays a key role in the world’s economy. Vast quantities of crude oil, their by-products and derivatives are produced, processed and distributed every day. Indeed, producing and processing significant volumes of crude oil requires connecting to wells in different fields that are usually spread across large geographical areas. This crude oil is then processed by Gas Oil Separation Plants (GOSPs). These facilities are often grouped into clusters that are within approximate distance from each other and then connected laterally via swing lines which allow shifting part or all of the production from one GOSP to another. Transfer lines also exist to allow processing intermediate products in neighbouring GOSPs, thereby increasing complexity and possible interactions. In return, this provides an opportunity to leverage mathematical optimization to improve network planning and load allocation. Similarly, in major oil producing countries, vast gas processing networks exist to process associated and non-associated gases. These gas plants are often located near major feed sources. Similar to GOSPs, they are also often connected through swing lines, which allow shifting feedstock from some plants to others. GOSPs and gas plants are often grouped as oil and gas midstream plants. These plants are operated on varied time horizons and plant boundaries. While plant operators are concerned with the day-to-day operation of their facility, network operators must ensure that the entire network is operated optimally and that product supply is balanced with demand. They are therefore in charge of allocating load to individual plants, while knowing each plants constraints and processing capabilities. Network planners are also in charge of producing production plans at varied time-scales, which vary from yearly to monthly and near-real time. This work aims to establish a novel framework for optimizing Oil and Gas Midstream plants for near-real time network operation. This topic has not been specifically addressed in the existing literature. It examines problems which involve operating networks of GOSPs and gas plants towards an optimal solution. It examines various modelling approaches which are suited for this specific application. It then focuses at this stage of the research on the GOSP optimization problem where it addresses optimizing the operation of a complex network of GOSPs. The goal is to operate this network such that oil production targets are met at minimum energy consumption, and therefore minimizing OpEx and Greenhouse Gas Emissions. Similarly, it is often required to operate the network such that production is maximized. This thesis proposes a novel methodology to formulate and solve this problem. It describes the level of fidelity used to represent physical process units. A Mixed Integer Non-Linear Programming (MINLP) problem is then formulated and solved to optimize load allocation, swing line flowrates and equipment utilization. The model demonstrates advanced capabilities to systematically prescribe optimal operating points. This was then applied to an existing integrated network of GOSPs and tested at varying crude oil demand levels. The results demonstrate the ability to minimize energy consumption by up to 51% in the 50% throughput case while meeting oil production targets without added capital investment.Open Acces

    Hybrid multi-objective trajectory optimization of low-thrust space mission design

    Get PDF
    Mención Internacional en el título de doctorThe overall goal of this dissertation is to develop multi-objective optimization algorithms for computing low-thrust trajectories. The thesis is motivated by the increasing number of space projects that will benefit from low-thrust propulsion technologies to gain unprecedented scientific, economic and social return. The low-cost design of such missions and the inclusion of concurrent engineering practices during the preliminary design phase demand advanced tools to rapidly explore different solutions and to benchmark them with respect to multiple conicting criteria. However, the determination of optimal low-thrust transfers is a challenging task and remains an active research field that seeks performance improvements. This work contributes to increase the efficiency of searching wide design spaces, reduce the amount of necessary human involvement, and enhance the capabilities to include complex operational constraints. To that end, the general low-thrust trajectory optimization problem is stated as a multi-objective Hybrid Optimal Control Problem. This formulation allows to simultaneously optimize discrete decisionmaking processes, discrete dynamics, and the continuous low-thrust steering law. Within this framework, a sequential two-step solution approach is devised for two different scenarios. The first problem considers the optimization of low-thrust multi-gravity assist trajectories. The proposed solution procedure starts by assuming a planar shape-based model for the interplanetary trajectory. A multi-objective heuristic algorithm combined with a gradient-based solver optimize the parameters de_ning the shape of the trajectory, the number and sequence of the gravity assists, the departure and arrival dates, and the launch excess velocity. In the second step, candidate solutions are deemed as initial guesses to solve the Nonlinear Programming Problem resulting from applying a direct collocation transcription scheme. In this step, the sequence of planetary gravity assists is known and provided by the heuristic search, dynamics is three-dimensional, and the steering law is not predefined. Operational constraints to comply with launch asymptote declination limits and fixed reorientation times during the transfer apply. The presented approach is tested on a rendezvous mission to Ceres, on a yby mission to Jupiter, and on a rendezvous mission to Pluto. Pareto-optimal solutions in terms of time of ight and propellant mass consumed (or alternatively delivered mass) are obtained. Results outperform those found in the literature in terms of optimality while showing the effectiveness of the proposed methodology to generate quick performance estimates. The second problem considers the simultaneous optimization of fully electric, fully chemical and combined chemical-electric orbit raising transfers between Earth's orbits is considered. In the first step of the solution approach, the control law of the electric engine is parameterized by a Lyapunov function. A multi-objective heuristic algorithm selects the optimal propulsion system, the transfer type, the low-thrust control history, as well as the number, orientation, and magnitude of the chemical firings. Earth's shadow, oblateness and Van-Allen radiation effects are included. In the second step, candidate solutions are deemed as initial guesses to solve the Nonlinear Programming Problem resulting from applying a direct collocation scheme. Operational constraints to avoid the GEO ring in combination to slew rate limits and slot phasing constraints are included. The proposed approach is applied to two transfer scenarios to GEO orbit. Pareto-optimal solutions trading of propellant mass, time of ight and solar-cell degradation are obtained. It is identified that the application of operational restrictions causes minor penalties in the objective function. Additionally, the analysis highlights the benefits that combined chemical-electric platforms may provide for future GEO satellites.El objetivo principal de esta trabajo es desarrollar algoritmos de optimización multi-objetivo para la obtención de trayectorias espaciales con motores de bajo empuje. La tesis está motivada por el creciente número de misiones que se van a beneficiar del uso de estas tecnologías para conseguir beneficios científicos, económicos y sociales sin precedentes. El diseño de bajo coste de dichas misiones ligado a los principios de ingeniería concurrente requieren herramientas computacionales avanzadas que exploren rápidamente distintas soluciones y las comparen entre sí respecto a varios criterios. Sin embargo, esta tarea permanece como un campo de investigación activo que busca continuamente mejoras de rendimiento durante el proceso. Este trabajo contribuye a aumentar la eficiencia cuando espacio de diseño es amplio, a reducir la participación humana requerida y a mejorar las capacidades para incluir restricciones operacionales complejas. Para este fin, el problema general de optimización de trayectorias de bajo empuje se presenta como un problema híbrido de control óptimo. Esta formulación permite optimizar al mismo tiempo procesos de toma de decisiones, dinámica discreta y la ley de control del motor. Dentro de este marco, se idea un algoritmo secuencial de dos pasos para dos escenarios diferentes. El primer problema considera la optimización de trayectorias de bajo empuje con múltiples y-bys. El proceso de solución propuesto comienza asumiendo un modelo plano y shape-based para la trayectoria interplanetaria. Un algoritmo de optimización heurístico y multi-objetivo combinado con un resolvedor basado en gradiente optimizan los parámetros de la espiral que definen la forma de la trayectoria, el número y la secuencia de las maniobras gravitacionales, las fechas de salida y llegada, y la velocidad de lanzamiento. En el segundo paso, las soluciones candidatas se usan como estimación inicial para resolver el problema de optimización no lineal que resulta de aplicar un método de transcripción directa. En este paso, las secuencia de y-bys es conocida y determinada por el paso anterior, la dinámica es tridimensional, y la ley de control no está prefinida. Además, se pueden aplicar restricciones operacionales relacionadas con las declinación de la asíntota de salida e imponer tiempos de reorientación fijos. Este enfoque es probado en misiones a Ceres, a Júpiter y a Plutón. Se obtienen soluciones óptimas de Pareto en función del tiempo de vuelo y la masa de combustible consumida (o la masa entregada). Los resultados obtenidos mejoran los disponibles en la literatura en términos de optimalidad, a la vez que reflejan la efectividad de la metodología a propuesta para generar estimaciones rápidas. El segundo problema considera la optimización simultanea de transferencias entre órbitas terrestres que usan propulsión eléctrica, química o una combinación de ambas. En el primer paso del método de solución, la ley de control del motor eléctrico se parametriza por una función de Lyapunov. Un algoritmo de optimización heurístico y multi-objetivo selecciona el sistema propulsivo óptimo, el tipo de transferencia, la ley de control del motor de bajo empuje, así como el número, la orientación y la magnitud de los impulsos químicos. Se incluyen los efectos de la sombra y de la no esfericidad de la Tierra, además de la radiación de Van-Allen. En el segundo paso, las soluciones candidatas se usan como estimación inicial para resolver el problema de optimización no lineal que resulta de aplicar un método de transcripción directa. El método de solución propuesto se aplica a dos transferencias a GEO diferentes. Se obtienen soluciones óptimas de Pareto con respecto a la masa de combustible, el tiempo de vuelo y la degradación de las células solares. Se identifican que la aplicación de las restricciones operacionales penaliza mínimamente la función objetivo. Además, los análisis presentados destacan los beneficios que la propulsión química y eléctrica combinada proporcionarían a los satélites en GEO.Programa de Doctorado en Mecánica de Fluidos por la Universidad Carlos III de Madrid; la Universidad de Jaén; la Universidad de Zaragoza; la Universidad Nacional de Educación a Distancia; la Universidad Politécnica de Madrid y la Universidad Rovira i Virgili.Presidente: Rafael Vázquez Valenzuela.- Secretario: Claudio Bombardelli.- Vocal: Bruce A. Conwa

    Hybrid evolutionary techniques for constrained optimisation design

    Get PDF
    This thesis a research program in which novel and generic optimisation methods were developed so that can be applied to a multitude of mathematically modelled business problems which the standard optimisation techniques often fail to deal with. The continuous and mixed discrete optimisation methods have been investigated by designing new approaches that allow users to more effectively tackle difficult optimisation problems with a mix of integer and real valued variables. The focus of this thesis presents practical suggestions towards the implementation of hybrid evolutionary approaches for solving optimisation problems with highly structured constraints. This work also introduces a derivation of the different optimisation methods that have been reported in the literature. Major theoretical properties of the new methods have been presented and implemented. Here we present detailed description of the most essential steps of the implementation. The performance of the developed methods is evaluated against real-world benchmark problems, and the numerical results of the test problems are found to be competitive compared to existing methods

    Multidisciplinary Design Optimization for Space Applications

    Get PDF
    Multidisciplinary Design Optimization (MDO) has been increasingly studied in aerospace engineering with the main purpose of reducing monetary and schedule costs. The traditional design approach of optimizing each discipline separately and manually iterating to achieve good solutions is substituted by exploiting the interactions between the disciplines and concurrently optimizing every subsystem. The target of the research was the development of a flexible software suite capable of concurrently optimizing the design of a rocket propellant launch vehicle for multiple objectives. The possibility of combining the advantages of global and local searches have been exploited in both the MDO architecture and in the selected and self developed optimization methodologies. Those have been compared according to computational efficiency and performance criteria. Results have been critically analyzed to identify the most suitable optimization approach for the targeted MDO problem

    Handling Uncertainties in Process Optimization

    Get PDF
    Esta tesis doctoral presenta el estudio de técnicas que permiten manejar las incertidumbres en la optimización de procesos, desde el punto de vista del comportamiento aleatorio de las variables y de los errores en los modelos utilizados en la optimización. Para el tratamiento de las variables inciertas, se presenta la aplicación de la Programación de dos Etapas y Optimización Probabilística a un proceso de hidrodesulfuración. Los resultados permiten asegurar factibilidad en la operación, independiente del valor que tome la variable aleatoria dentro de su distribución de probabilidad. Acerca del manejo de la incertidumbre derivada del conocimiento parcial del proceso, se ha estudiado el método de Optimización en Tiempo Real con adaptación de modificadores, proponiendo mejoras que permiten: (1) evitar infactibilidades en su evolución, (2) obtener el óptimo real del proceso sin necesidad de estimar sus gradientes y (3) identificar las limitaciones para su aplicación en sistemas dinámicos de horizonteDepartamento de Ingeniería de Sistemas y Automátic

    Data-Driven Mixed-Integer Optimization for Modular Process Intensification

    Get PDF
    High-fidelity computer simulations provide accurate information on complex physical systems. These often involve proprietary codes, if-then operators, or numerical integrators to describe phenomena that cannot be explicitly captured by physics-based algebraic equations. Consequently, the derivatives of the model are either absent or too complicated to compute; thus, the system cannot be directly optimized using derivative-based optimization solvers. Such problems are known as “black-box” systems since the constraints and the objective of the problem cannot be obtained as closed-form equations. One promising approach to optimize black-box systems is surrogate-based optimization. Surrogate-based optimization uses simulation data to construct low-fidelity approximation models. These models are optimized to find an optimal solution. We study several strategies for surrogate-based optimization for nonlinear and mixed-integer nonlinear black-box problems. First, we explore several types of surrogate models, ranging from simple subset selection for regression models to highly complex machine learning models. Second, we propose a novel surrogate-based optimization algorithm for black-box mixed-integer nonlinear programming problems. The algorithm systematically employs data-preprocessing techniques, surrogate model fitting, and optimization-based adaptive sampling to efficiently locate the optimal solution. Finally, a case study on modular carbon capture is presented. Simultaneous process optimization and adsorbent selection are performed to determine the optimal module design. An economic analysis is presented to determine the feasibility of a proposed modular facility.Ph.D

    Optimization of Gas Transmission Networks under Energetic and Environmental Considerations

    Get PDF
    The transport of large quantities of natural gas (NG) is carried out by pipelinenetwork systems across long distances. Pipeline network systems include one orseveral compressor stations which compensate for pressure drops. A typical net-work today might consist of thousands of pipes, dozens of stations, and manyother devices, such as valves and regulators. Inside each station, there can be sev-eral groups of compressor units of various vintages that were installed as the ca-pacity of the system expanded. The compressor stations typically consume about3 to 5% of the transported gas. It is estimated that the global optimization ofoperations can save considerably the fuel consumed by the stations. Hence, theproblem of minimizing fuel cost is of great importance. This study presents amathematical formulation for NG transport through pipelines and compressors byconsidering the mass and energy balance equations on the basic elements of a di-dactic network from the literature. First, a deterministic optimization procedure isimplemented. The objective of this formulation is the fuel minimization problemin the compressor stations for a fixed gas mass flow delivery. A second example isdevoted to the simultaneous consideration of gas mass flow delivery maximizationand fuel consumption minimization. In that case, two procedures are compared:a genetic algorithm coupled with a Newton-Raphson procedure and the scalariza-tion method of ?-constraint. In both monobjective and biobjective cases, a studyof carbon dioxide (CO2) emissions is carried out. The Pareto front deduced fromthe biobjective optimization can be used either for identifying the minimum andmaximum network capacity in terms of CO2 emissions and mass flow delivery or for a given mass flow delivery for determining the minimal CO2emissions froman appropriate operating of the compressor stations

    Proceedings of the XIII Global Optimization Workshop: GOW'16

    Get PDF
    [Excerpt] Preface: Past Global Optimization Workshop shave been held in Sopron (1985 and 1990), Szeged (WGO, 1995), Florence (GO’99, 1999), Hanmer Springs (Let’s GO, 2001), Santorini (Frontiers in GO, 2003), San José (Go’05, 2005), Mykonos (AGO’07, 2007), Skukuza (SAGO’08, 2008), Toulouse (TOGO’10, 2010), Natal (NAGO’12, 2012) and Málaga (MAGO’14, 2014) with the aim of stimulating discussion between senior and junior researchers on the topic of Global Optimization. In 2016, the XIII Global Optimization Workshop (GOW’16) takes place in Braga and is organized by three researchers from the University of Minho. Two of them belong to the Systems Engineering and Operational Research Group from the Algoritmi Research Centre and the other to the Statistics, Applied Probability and Operational Research Group from the Centre of Mathematics. The event received more than 50 submissions from 15 countries from Europe, South America and North America. We want to express our gratitude to the invited speaker Panos Pardalos for accepting the invitation and sharing his expertise, helping us to meet the workshop objectives. GOW’16 would not have been possible without the valuable contribution from the authors and the International Scientific Committee members. We thank you all. This proceedings book intends to present an overview of the topics that will be addressed in the workshop with the goal of contributing to interesting and fruitful discussions between the authors and participants. After the event, high quality papers can be submitted to a special issue of the Journal of Global Optimization dedicated to the workshop. [...
    corecore