2,690 research outputs found

    Blocked All-Pairs Shortest Paths Algorithm on Intel Xeon Phi KNL Processor: A Case Study

    Full text link
    Manycores are consolidating in HPC community as a way of improving performance while keeping power efficiency. Knights Landing is the recently released second generation of Intel Xeon Phi architecture. While optimizing applications on CPUs, GPUs and first Xeon Phi's has been largely studied in the last years, the new features in Knights Landing processors require the revision of programming and optimization techniques for these devices. In this work, we selected the Floyd-Warshall algorithm as a representative case study of graph and memory-bound applications. Starting from the default serial version, we show how data, thread and compiler level optimizations help the parallel implementation to reach 338 GFLOPS.Comment: Computer Science - CACIC 2017. Springer Communications in Computer and Information Science, vol 79

    Optimizing the MapReduce Framework on Intel Xeon Phi Coprocessor

    Full text link
    With the ease-of-programming, flexibility and yet efficiency, MapReduce has become one of the most popular frameworks for building big-data applications. MapReduce was originally designed for distributed-computing, and has been extended to various architectures, e,g, multi-core CPUs, GPUs and FPGAs. In this work, we focus on optimizing the MapReduce framework on Xeon Phi, which is the latest product released by Intel based on the Many Integrated Core Architecture. To the best of our knowledge, this is the first work to optimize the MapReduce framework on the Xeon Phi. In our work, we utilize advanced features of the Xeon Phi to achieve high performance. In order to take advantage of the SIMD vector processing units, we propose a vectorization friendly technique for the map phase to assist the auto-vectorization as well as develop SIMD hash computation algorithms. Furthermore, we utilize MIMD hyper-threading to pipeline the map and reduce to improve the resource utilization. We also eliminate multiple local arrays but use low cost atomic operations on the global array for some applications, which can improve the thread scalability and data locality due to the coherent L2 caches. Finally, for a given application, our framework can either automatically detect suitable techniques to apply or provide guideline for users at compilation time. We conduct comprehensive experiments to benchmark the Xeon Phi and compare our optimized MapReduce framework with a state-of-the-art multi-core based MapReduce framework (Phoenix++). By evaluating six real-world applications, the experimental results show that our optimized framework is 1.2X to 38X faster than Phoenix++ for various applications on the Xeon Phi

    An assessment of the connection machine

    Get PDF
    The CM-2 is an example of a connection machine. The strengths and problems of this implementation are considered as well as important issues in the architecture and programming environment of connection machines in general. These are contrasted to the same issues in Multiple Instruction/Multiple Data (MIMD) microprocessors and multicomputers

    Coarse-grained reconfigurable array architectures

    Get PDF
    Coarse-Grained Reconfigurable Array (CGRA) architectures accelerate the same inner loops that benefit from the high ILP support in VLIW architectures. By executing non-loop code on other cores, however, CGRAs can focus on such loops to execute them more efficiently. This chapter discusses the basic principles of CGRAs, and the wide range of design options available to a CGRA designer, covering a large number of existing CGRA designs. The impact of different options on flexibility, performance, and power-efficiency is discussed, as well as the need for compiler support. The ADRES CGRA design template is studied in more detail as a use case to illustrate the need for design space exploration, for compiler support and for the manual fine-tuning of source code

    The HPCG benchmark: analysis, shared memory preliminary improvements and evaluation on an Arm-based platform

    Get PDF
    The High-Performance Conjugate Gradient (HPCG) benchmark complements the LINPACK benchmark in the performance evaluation coverage of large High-Performance Computing (HPC) systems. Due to its lower arithmetic intensity and higher memory pressure, HPCG is recognized as a more representative benchmark for data-center and irregular memory access pattern workloads, therefore its popularity and acceptance is raising within the HPC community. As only a small fraction of the reference version of the HPCG benchmark is parallelized with shared memory techniques (OpenMP), we introduce in this report two OpenMP parallelization methods. Due to the increasing importance of Arm architecture in the HPC scenario, we evaluate our HPCG code at scale on a state-of-the-art HPC system based on Cavium ThunderX2 SoC. We consider our work as a contribution to the Arm ecosystem: along with this technical report, we plan in fact to release our code for boosting the tuning of the HPCG benchmark within the Arm community.Postprint (author's final draft

    Architecture-Aware Optimization on a 1600-core Graphics Processor

    Get PDF
    The graphics processing unit (GPU) continues to make significant strides as an accelerator in commodity cluster computing for high-performance computing (HPC). For example, three of the top five fastest supercomputers in the world, as ranked by the TOP500, employ GPUs as accelerators. Despite this increasing interest in GPUs, however, optimizing the performance of a GPU-accelerated compute node requires deep technical knowledge of the underlying architecture. Although significant literature exists on how to optimize GPU performance on the more mature NVIDIA CUDA architecture, the converse is true for OpenCL on the AMD GPU. Consequently, we present and evaluate architecture-aware optimizations for the AMD GPU. The most prominent optimizations include (i) explicit use of registers, (ii) use of vector types, (iii) removal of branches, and (iv) use of image memory for global data. We demonstrate the efficacy of our AMD GPU optimizations by applying each optimization in isolation as well as in concert to a large-scale, molecular modeling application called GEM. Via these AMD-specific GPU optimizations, the AMD Radeon HD 5870 GPU delivers 65% better performance than with the wellknown NVIDIA-specific optimizations
    corecore