5,360 research outputs found

    Blind Source Separation Based on Covariance Ratio and Artificial Bee Colony Algorithm

    Get PDF
    The computation amount in blind source separation based on bioinspired intelligence optimization is high. In order to solve this problem, we propose an effective blind source separation algorithm based on the artificial bee colony algorithm. In the proposed algorithm, the covariance ratio of the signals is utilized as the objective function and the artificial bee colony algorithm is used to solve it. The source signal component which is separated out, is then wiped off from mixtures using the deflation method. All the source signals can be recovered successfully by repeating the separation process. Simulation experiments demonstrate that significant improvement of the computation amount and the quality of signal separation is achieved by the proposed algorithm when compared to previous algorithms

    Any-way and Sparse Analyses for Multimodal Fusion and Imaging Genomics

    Get PDF
    This dissertation aims to develop new algorithms that leverage sparsity and mutual information across data modalities built upon the independent component analysis (ICA) framework to improve the performance of current ICA-based multimodal fusion approaches. These algorithms are further applied to both simulated data and real neuroimaging and genomic data to examine their performance. The identified neuroimaging and genomic patterns can help better delineate the pathology of mental disorders or brain development. To alleviate the signal-background separation difficulties in infomax-decomposed sources for genomic data, we propose a sparse infomax by enhancing a robust sparsity measure, the Hoyer index. Hoyer index is scale-invariant and well suited for ICA frameworks since the scale of decomposed sources is arbitrary. Simulation results demonstrate that sparse infomax increases the component detection accuracy for situations where the source signal-to-background (SBR) ratio is low, particularly for single nucleotide polymorphism (SNP) data. The proposed sparse infomax is further extended into two data modalities as a sparse parallel ICA for applications to imaging genomics in order to investigate the associations between brain imaging and genomics. Simulation results show that sparse parallel ICA outperforms parallel ICA with improved accuracy for structural magnetic resonance imaging (sMRI)-SNP association detection and component spatial map recovery, as well as with enhanced sparsity for sMRI and SNP components under noisy cases. Applying the proposed sparse parallel ICA to fuse the whole-brain sMRI and whole-genome SNP data of 24985 participants in the UK biobank, we identify three stable and replicable sMRI-SNP pairs. The identified sMRI components highlight frontal, parietal, and temporal regions and associate with multiple cognitive measures (with different association strengths in different age groups for the temporal component). Top SNPs in the identified SNP factor are enriched in inflammatory disease and inflammatory response pathways, which also regulate gene expression, isoform percentage, transcription expression, or methylation level in the frontal region, and the regulation effects are significantly enriched. Applying the proposed sparse parallel ICA to imaging genomics in attention-deficit/hyperactivity disorder (ADHD), we identify and replicate one SNP component related to gray matter volume (GMV) alterations in superior and middle frontal gyri underlying working memory deficit in adults and adolescents with ADHD. The association is more significant in ADHD families than controls and stronger in adults and older adolescents than younger ones. The identified SNP component highlights SNPs in long non-coding RNAs (lncRNAs) in chromosome 5 and in several protein-coding genes that are involved in ADHD, such as MEF2C, CADM2, and CADPS2. Top SNPs are enriched in human brain neuron cells and regulate gene expression, isoform percentage, transcription expression, or methylation level in the frontal region. Moreover, to increase the flexibility and robustness in mining multimodal data, we propose aNy-way ICA, which optimizes the entire correlation structure of linked components across any number of modalities via the Gaussian independent vector analysis and simultaneously optimizes independence via separate (parallel) ICAs. Simulation results demonstrate that aNy-way ICA recover sources and loadings, as well as the true covariance patterns with improved accuracy compared to existing multimodal fusion approaches, especially under noisy conditions. Applying the proposed aNy-way ICA to integrate structural MRI, fractal n-back, and emotion identification task functional MRIs collected in the Philadelphia Neurodevelopmental Cohort (PNC), we identify and replicate one linked GMV-threat-2-back component, and the threat and 2-back components are related to intelligence quotient (IQ) score in both discovery and replication samples. Lastly, we extend the proposed aNy-way ICA with a reference constraint to enable prior-guided multimodal fusion. Simulation results show that aNy-way ICA with reference recovers the designed linkages between reference and modalities, cross-modality correlations, as well as loading and component matrices with improved accuracy compared to multi-site canonical correlation analysis with reference (MCCAR)+joint ICA under noisy conditions. Applying aNy-way ICA with reference to supervise structural MRI, fractal n-back, and emotion identification task functional MRIs fusion in PNC with IQ as the reference, we identify and replicate one IQ-related GMV-threat-2-back component, and this component is significantly correlated across modalities in both discovery and replication samples.Ph.D

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Non Expectations and Adaptive Behaviours: the Missing Trade-off in Models of Innovation

    Get PDF
    We explore the modelling of the determination of the level of R&D investment of firms. This means that we do not tackle the decision of being an innovator or not, nor the adoption of a new technology. We exclude these decisions and focus on the situations where firms invest in internal R&D in order to produce an innovation. In that case the problem is to determine the level of R&D investment. Our interest is to analyse how expectation and adaptation can be combined in the modelling of R&D investment rules. In the literature both dimensions are generally split up: rational expectations are assumed in neoclassical models whereas alternative approaches (institutional and/or evolutionary) generally adopt a purely adaptive representation.Bounded rationality, learning, expectations, innovation dynamics.

    Perception architecture exploration for automotive cyber-physical systems

    Get PDF
    2022 Spring.Includes bibliographical references.In emerging autonomous and semi-autonomous vehicles, accurate environmental perception by automotive cyber physical platforms are critical for achieving safety and driving performance goals. An efficient perception solution capable of high fidelity environment modeling can improve Advanced Driver Assistance System (ADAS) performance and reduce the number of lives lost to traffic accidents as a result of human driving errors. Enabling robust perception for vehicles with ADAS requires solving multiple complex problems related to the selection and placement of sensors, object detection, and sensor fusion. Current methods address these problems in isolation, which leads to inefficient solutions. For instance, there is an inherent accuracy versus latency trade-off between one stage and two stage object detectors which makes selecting an enhanced object detector from a diverse range of choices difficult. Further, even if a perception architecture was equipped with an ideal object detector performing high accuracy and low latency inference, the relative position and orientation of selected sensors (e.g., cameras, radars, lidars) determine whether static or dynamic targets are inside the field of view of each sensor or in the combined field of view of the sensor configuration. If the combined field of view is too small or contains redundant overlap between individual sensors, important events and obstacles can go undetected. Conversely, if the combined field of view is too large, the number of false positive detections will be high in real time and appropriate sensor fusion algorithms are required for filtering. Sensor fusion algorithms also enable tracking of non-ego vehicles in situations where traffic is highly dynamic or there are many obstacles on the road. Position and velocity estimation using sensor fusion algorithms have a lower margin for error when trajectories of other vehicles in traffic are in the vicinity of the ego vehicle, as incorrect measurement can cause accidents. Due to the various complex inter-dependencies between design decisions, constraints and optimization goals a framework capable of synthesizing perception solutions for automotive cyber physical platforms is not trivial. We present a novel perception architecture exploration framework for automotive cyber- physical platforms capable of global co-optimization of deep learning and sensing infrastructure. The framework is capable of exploring the synthesis of heterogeneous sensor configurations towards achieving vehicle autonomy goals. As our first contribution, we propose a novel optimization framework called VESPA that explores the design space of sensor placement locations and orientations to find the optimal sensor configuration for a vehicle. We demonstrate how our framework can obtain optimal sensor configurations for heterogeneous sensors deployed across two contemporary real vehicles. We then utilize VESPA to create a comprehensive perception architecture synthesis framework called PASTA. This framework enables robust perception for vehicles with ADAS requiring solutions to multiple complex problems related not only to the selection and placement of sensors but also object detection, and sensor fusion as well. Experimental results with the Audi-TT and BMW Minicooper vehicles show how PASTA can intelligently traverse the perception design space to find robust, vehicle-specific solutions

    A Comparison of ICA versus genetic algorithm optimized ICA for use in non-invasive muscle tissue EMG

    Get PDF
    Includes bibliographical references.The patent developed by Dr. L. John [1] allows for the the detection of deep muscle activation through the combination of specially positioned monopolar surface Electromyography (sEMG) electrodes and a Blind Source Separation algorithm. This concept was then proved by Morowasi and John [2] in a 12 electrode prototype system around the bicep. This proof of concept showed that it was possible to extract the deep tissue activity of the brachialis muscle in the upper arm, however, the effect of surface electrode positioning and effectual number of electrodes on signal quality is still unclear. The hope of this research is to extend this work. In this research, a genetic algorithm (GA) is implemented on top of the Fast Independent Component Analysis (FastICA) algorithm to reduce the number of electrodes needed to isolate the activity from all muscles in the upper arm, including deep tissue. The GA selects electrodes based on the amount of significant information they contribute to the ICA solution and by doing so, a reduced electrode set is generated and alternative electrode positions are identified. This allows a near optimal electrode configuration to be produced for each user. The benefits of this approach are: 1.The generalized electrode array and this algorithm can select the near optimal electrode arrangement with very minimal understanding of the underlying anatomy. 2. It can correct for small anatomical differences between test subjects and act as a calibration phase for individuals. As with any design there are also disadvantages, such as each user needs to have the electrode placement specifically customised for him or her and this process needs to be conducted using a higher number of electrodes to begin with

    Understanding the errors of SHAPE-directed RNA structure modeling

    Full text link
    Single-nucleotide-resolution chemical mapping for structured RNA is being rapidly advanced by new chemistries, faster readouts, and coupling to computational algorithms. Recent tests have shown that selective 2'-hydroxyl acylation by primer extension (SHAPE) can give near-zero error rates (0-2%) in modeling the helices of RNA secondary structure. Here, we benchmark the method using six molecules for which crystallographic data are available: tRNA(phe) and 5S rRNA from Escherichia coli, the P4-P6 domain of the Tetrahymena group I ribozyme, and ligand-bound domains from riboswitches for adenine, cyclic di-GMP, and glycine. SHAPE-directed modeling of these highly structured RNAs gave an overall false negative rate (FNR) of 17% and a false discovery rate (FDR) of 21%, with at least one helix prediction error in five of the six cases. Extensive variations of data processing, normalization, and modeling parameters did not significantly mitigate modeling errors. Only one varation, filtering out data collected with deoxyinosine triphosphate during primer extension, gave a modest improvement (FNR = 12%, and FDR = 14%). The residual structure modeling errors are explained by the insufficient information content of these RNAs' SHAPE data, as evaluated by a nonparametric bootstrapping analysis. Beyond these benchmark cases, bootstrapping suggests a low level of confidence (<50%) in the majority of helices in a previously proposed SHAPE-directed model for the HIV-1 RNA genome. Thus, SHAPE-directed RNA modeling is not always unambiguous, and helix-by-helix confidence estimates, as described herein, may be critical for interpreting results from this powerful methodology.Comment: Biochemistry, Article ASAP (Aug. 15, 2011

    Model-based evolutionary algorithms

    Get PDF
    • …
    corecore