1,392 research outputs found

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    An approach based on tunicate swarm algorithm to solve partitional clustering problem

    Get PDF
    The tunicate swarm algorithm (TSA) is a newly proposed population-based swarm optimizer for solving global optimization problems. TSA uses best solution in the population in order improve the intensification and diversification of the tunicates. Thus, the possibility of finding a better position for search agents has increased. The aim of the clustering algorithms is to distributed the data instances into some groups according to similar and dissimilar features of instances. Therefore, with a proper clustering algorithm the dataset will be separated to some groups and it’s expected that the similarities of groups will be minimum. In this work, firstly, an approach based on TSA has proposed for solving partitional clustering problem. Then, the TSA is implemented on ten different clustering problems taken from UCI Machine Learning Repository, and the clustering performance of the TSA is compared with the performances of the three well known clustering algorithms such as fuzzy c-means, k-means and k-medoids. The experimental results and comparisons show that the TSA based approach is highly competitive and robust optimizer for solving the partitional clustering problems

    Computational meta-heuristics based on Machine Learning to optimize fuel consumption of vessels using diesel engines

    Get PDF
    With the expansion of means of river transportation, especially in the case of small and medium-sized vessels that make routes of greater distances, the cost of fuel, if not taken as an analysis criterion for a larger profit margin, is considered to be a primary factor , considering that the value of fuel specifically diesel to power internal combustion machines is high. Therefore, the use of tools that assist in decision-making becomes necessary, as is the case of the present research, which aims to contribute with a computational model of prediction and optimization of the best speed to decrease the fuel cost considering the characteristics of the SCANIA 315 machine. propulsion model, of a vessel from the river port of Manaus that carries out river transportation to several municipalities in Amazonas. According to the results of the simulations, the best training algorithm of the Artificial Neural Network (ANN) was the BFGS Quasi-Newton considering the characteristics of the engine for optimization with Genetic Algorithm (AG)

    Sensored speed control of brushless DC motor based salp swarm algorithm

    Get PDF
    This article uses one of the newest and efficient meta-heuristic optimization algorithms inspired from nature called salp swarm algorithm (SSA). It imitates the exploring and foraging behavior of salps in oceans. SSA is proposed for parameters tuning of speed controller in brushless DC (BLDC) motor to achieve the best performance. The suggested work modeling and control scheme is done using MATLAB/Simulink and coding environments. In this work, a 6-step inverter is feeding a BLDC motor with a Hall sensor effect. The proposed technique is compared with other nature-inspired techniques such as cuckoo search optimizer (CSO), honey bee optimization (HBO), and flower pollination algorithm (FPA) under the same operating conditions. This comparison aims to show the superiority features of the proposed tuning technique versus other optimization strategies. The proposed tuning technique shows superior optimization features versus other bio-inspired tuning methods that are used in this work. It improves the controller performance of BLDC motor. It refining the speed response features which results in decreasing the rising time, steady-state error, peak overshoot, and settling time

    Adaptation of sensor morphology: an integrative view of perception from biologically inspired robotics perspective

    Get PDF
    Sensor morphology, the morphology of a sensing mechanism which plays a role of shaping the desired response from physical stimuli from surroundings to generate signals usable as sensory information, is one of the key common aspects of sensing processes. This paper presents a structured review of researches on bioinspired sensor morphology implemented in robotic systems, and discusses the fundamental design principles. Based on literature review, we propose two key arguments: first, owing to its synthetic nature, biologically inspired robotics approach is a unique and powerful methodology to understand the role of sensor morphology and how it can evolve and adapt to its task and environment. Second, a consideration of an integrative view of perception by looking into multidisciplinary and overarching mechanisms of sensor morphology adaptation across biology and engineering enables us to extract relevant design principles that are important to extend our understanding of the unfinished concepts in sensing and perceptionThis study was supported by the European Commission with the RoboSoft CA (A Coordination Action for Soft Robotics, contract #619319). SGN was supported by School of Engineering seed funding (2016), Malaysia Campus, Monash University

    A literature review on the optimization of legged robots

    Get PDF
    Over the last two decades the research and development of legged locomotion robots has grown steadily. Legged systems present major advantages when compared with ‘traditional’ vehicles, because they allow locomotion in inaccessible terrain to vehicles with wheels and tracks. However, the robustness of legged robots, and especially their energy consumption, among other aspects, still lag behind mechanisms that use wheels and tracks. Therefore, in the present state of development, there are several aspects that need to be improved and optimized. Keeping these ideas in mind, this paper presents the review of the literature of different methods adopted for the optimization of the structure and locomotion gaits of walking robots. Among the distinct possible strategies often used for these tasks are referred approaches such as the mimicking of biological animals, the use of evolutionary schemes to find the optimal parameters and structures, the adoption of sound mechanical design rules, and the optimization of power-based indexes

    An Analysis Review: Optimal Trajectory for 6-DOF-based Intelligent Controller in Biomedical Application

    Get PDF
    With technological advancements and the development of robots have begun to be utilized in numerous sectors, including industrial, agricultural, and medical. Optimizing the path planning of robot manipulators is a fundamental aspect of robot research with promising future prospects. The precise robot manipulator tracks can enhance the efficacy of a variety of robot duties, such as workshop operations, crop harvesting, and medical procedures, among others. Trajectory planning for robot manipulators is one of the fundamental robot technologies, and manipulator trajectory accuracy can be enhanced by the design of their controllers. However, the majority of controllers devised up to this point were incapable of effectively resolving the nonlinearity and uncertainty issues of high-degree freedom manipulators in order to overcome these issues and enhance the track performance of high-degree freedom manipulators. Developing practical path-planning algorithms to efficiently complete robot functions in autonomous robotics is critical. In addition, designing a collision-free path in conjunction with the physical limitations of the robot is a very challenging challenge due to the complex environment surrounding the dynamics and kinetics of robots with different degrees of freedom (DoF) and/or multiple arms. The advantages and disadvantages of current robot motion planning methods, incompleteness, scalability, safety, stability, smoothness, accuracy, optimization, and efficiency are examined in this paper
    • 

    corecore