193 research outputs found

    Enhancement of Ant Colony Optimization for Grid Job Scheduling and Load Balancing

    Get PDF
    Managing resources in grid computing system is complicated due to the distributed and heterogeneous nature of the resources. Stagnation in grid computing system may occur when all jobs are required or are assigned to the same resources which lead to the resources having high workload or the time taken to process a job is high. This research proposes an Enhanced Ant Colony Optimization (EACO) algorithm that caters dynamic scheduling and load balancing in the grid computing system. The proposed algorithm can overcome stagnation problem, minimize processing time, match jobs with suitable resources, and balance entire resources in grid environment. This research follows the experimental research methodology that consists of problem analysis, developing the proposed framework, constructing the simulation environment, conducting a set of experiments and evaluating the results. There are three new mechanisms in this proposed framework that are used to organize the work of an ant colony i.e. initial pheromone value mechanism, resource selection mechanism and pheromone update mechanism. The resource allocation problem is modeled as a graph that can be used by the ant to deliver its pheromone. This graph consists of four types of vertices which are job, requirement, resource and capacity that are used in constructing the grid job scheduling. The proposed EACO algorithm takes into consideration the capacity of resources and the characteristics of jobs in determining the best resource to process a job. EACO selects the resources based on the pheromone value on each resource which is recorded in a matrix form. The initial pheromone value of each resource for each job is calculated based on the estimated transmission time and execution time of a given job. Resources with high pheromone value are selected to process the submitted jobs. Global pheromone update is performed after the completion of processing the jobs in order to reduce the pheromone value of resources. A simulation environment was developed using Java programming to test the performance of the proposed EACO algorithm against existing grid resource management algorithms such as Antz algorithm, Particle Swarm Optimization algorithm, Space Shared algorithm and Time Shared algorithm, in terms of processing time and resource utilization. Experimental results show that EACO produced better grid resource management solution compared to other algorithms

    A First Step Towards Automatically Building Network Representations

    Get PDF
    To fully harness Grids, users or middlewares must have some knowledge on the topology of the platform interconnection network. As such knowledge is usually not available, one must uses tools which automatically build a topological network model through some measurements. In this article, we define a methodology to assess the quality of these network model building tools, and we apply this methodology to representatives of the main classes of model builders and to two new algorithms. We show that none of the main existing techniques build models that enable to accurately predict the running time of simple application kernels for actual platforms. However some of the new algorithms we propose give excellent results in a wide range of situations

    Workload Schedulers - Genesis, Algorithms and Comparisons

    Get PDF
    In this article we provide brief descriptions of three classes of schedulers: Operating Systems Process Schedulers, Cluster Systems, Jobs Schedulers and Big Data Schedulers. We describe their evolution from early adoptions to modern implementations, considering both the use and features of algorithms. In summary, we discuss differences between all presented classes of schedulers and discuss their chronological development. In conclusion, we highlight similarities in the focus of scheduling strategies design, applicable to both local and distributed systems

    Master/worker parallel discrete event simulation

    Get PDF
    The execution of parallel discrete event simulation across metacomputing infrastructures is examined. A master/worker architecture for parallel discrete event simulation is proposed providing robust executions under a dynamic set of services with system-level support for fault tolerance, semi-automated client-directed load balancing, portability across heterogeneous machines, and the ability to run codes on idle or time-sharing clients without significant interaction by users. Research questions and challenges associated with issues and limitations with the work distribution paradigm, targeted computational domain, performance metrics, and the intended class of applications to be used in this context are analyzed and discussed. A portable web services approach to master/worker parallel discrete event simulation is proposed and evaluated with subsequent optimizations to increase the efficiency of large-scale simulation execution through distributed master service design and intrinsic overhead reduction. New techniques for addressing challenges associated with optimistic parallel discrete event simulation across metacomputing such as rollbacks and message unsending with an inherently different computation paradigm utilizing master services and time windows are proposed and examined. Results indicate that a master/worker approach utilizing loosely coupled resources is a viable means for high throughput parallel discrete event simulation by enhancing existing computational capacity or providing alternate execution capability for less time-critical codes.Ph.D.Committee Chair: Fujimoto, Richard; Committee Member: Bader, David; Committee Member: Perumalla, Kalyan; Committee Member: Riley, George; Committee Member: Vuduc, Richar

    Resource allocation for query processing in grid systems: A survey

    Get PDF
    Grid systems are very useful platforms for distributed databases, especially in some situations in which the scale of data sources and user requests is very high. However, the main characteristics of grid systems such as dynamicity, large size and heterogeneity, bring new problems to the query processing domain such as resource discovery and resource allocation. In this paper, we provide a survey related to resource allocation methods for query processing In data grid systems. We provide a classification for existing studies considering their approaches to the resource allocation problem. We provide a synthesis of the studies and propose evaluations and comparisons for the different classes of studies. ©2012 CRL Publishing Ltd

    JWORB - Java Web Object Request Broker for Commodity Software based Visual Data ow Metacomputing Programming Environment

    Get PDF
    Programming environments and tools that are simultaneously sustainable, highly functional, robust and easy to use have been hard to come by in the HPDC area. This is partially due to the difficulty in developing sophisticated customized systems for what is relatively small part of the worldwide computing enterprise. As the commodity software becomes naturally distributed with the onset of Web and Intranets, we observe now a new trend in HPDC community [1, 8, 12] to base high performance computing on the modern enterprise computing technologies. .. JWORB is a multi-protocol Java server under development at NPAC, currently capable of handling HTTP and IIOP protocols. Hence, JWORB can be viewed as a Java-based Web Server which can also act as a BORBA broker. We present here JWORB rationale, architecture implementation status, results of early performance measurements and we illustrate its role in the new WebFlow system under development

    JAVM: Internet-based Parallel Computing Using Java

    Full text link

    Hybrid ant colony system algorithm for static and dynamic job scheduling in grid computing

    Get PDF
    Grid computing is a distributed system with heterogeneous infrastructures. Resource management system (RMS) is one of the most important components which has great influence on the grid computing performance. The main part of RMS is the scheduler algorithm which has the responsibility to map submitted tasks to available resources. The complexity of scheduling problem is considered as a nondeterministic polynomial complete (NP-complete) problem and therefore, an intelligent algorithm is required to achieve better scheduling solution. One of the prominent intelligent algorithms is ant colony system (ACS) which is implemented widely to solve various types of scheduling problems. However, ACS suffers from stagnation problem in medium and large size grid computing system. ACS is based on exploitation and exploration mechanisms where the exploitation is sufficient but the exploration has a deficiency. The exploration in ACS is based on a random approach without any strategy. This study proposed four hybrid algorithms between ACS, Genetic Algorithm (GA), and Tabu Search (TS) algorithms to enhance the ACS performance. The algorithms are ACS(GA), ACS+GA, ACS(TS), and ACS+TS. These proposed hybrid algorithms will enhance ACS in terms of exploration mechanism and solution refinement by implementing low and high levels hybridization of ACS, GA, and TS algorithms. The proposed algorithms were evaluated against twelve metaheuristic algorithms in static (expected time to compute model) and dynamic (distribution pattern) grid computing environments. A simulator called ExSim was developed to mimic the static and dynamic nature of the grid computing. Experimental results show that the proposed algorithms outperform ACS in terms of best makespan values. Performance of ACS(GA), ACS+GA, ACS(TS), and ACS+TS are better than ACS by 0.35%, 2.03%, 4.65% and 6.99% respectively for static environment. For dynamic environment, performance of ACS(GA), ACS+GA, ACS+TS, and ACS(TS) are better than ACS by 0.01%, 0.56%, 1.16%, and 1.26% respectively. The proposed algorithms can be used to schedule tasks in grid computing with better performance in terms of makespan

    A Policy-Based Resource Brokering Environment for Computational Grids

    Get PDF
    With the advances in networking infrastructure in general, and the Internet in particular, we can build grid environments that allow users to utilize a diverse set of distributed and heterogeneous resources. Since the focus of such environments is the efficient usage of the underlying resources, a critical component is the resource brokering environment that mediates the discovery, access and usage of these resources. With the consumer\u27s constraints, provider\u27s rules, distributed heterogeneous resources and the large number of scheduling choices, the resource brokering environment needs to decide where to place the user\u27s jobs and when to start their execution in a way that yields the best performance for the user and the best utilization for the resource provider. As brokering and scheduling are very complicated tasks, most current resource brokering environments are either specific to a particular grid environment or have limited features. This makes them unsuitable for large applications with heterogeneous requirements. In addition, most of these resource brokering environments lack flexibility. Policies at the resource-, application-, and system-levels cannot be specified and enforced to provide commitment to the guaranteed level of allocation that can help in attracting grid users and contribute to establishing credibility for existing grid environments. In this thesis, we propose and prototype a flexible and extensible Policy-based Resource Brokering Environment (PROBE) that can be utilized by various grid systems. In designing PROBE, we follow a policy-based approach that provides PROBE with the intelligence to not only match the user\u27s request with the right set of resources, but also to assure the guaranteed level of the allocation. PROBE looks at the task allocation as a Service Level Agreement (SLA) that needs to be enforced between the resource provider and the resource consumer. The policy-based framework is useful in a typical grid environment where resources, most of the time, are not dedicated. In implementing PROBE, we have utilized a layered architecture and façade design patterns. These along with the well-defined API, make the framework independent of any architecture and allow for the incorporation of different types of scheduling algorithms, applications and platform adaptors as the underlying environment requires. We have utilized XML as a base for all the specification needs. This provides a flexible mechanism to specify the heterogeneous resources and user\u27s requests along with their allocation constraints. We have developed XML-based specifications by which high-level internal structures of resources, jobs and policies can be specified. This provides interoperability in which a grid system can utilize PROBE to discover and use resources controlled by other grid systems. We have implemented a prototype of PROBE to demonstrate its feasibility. We also describe a test bed environment and the evaluation experiments that we have conducted to demonstrate the usefulness and effectiveness of our approach
    corecore