1,916 research outputs found

    An information theoretic approach for generating an aircraft avoidance Markov decision process

    Get PDF
    Developing a collision avoidance system that can meet safety standards required of commercial aviation is challenging. A dynamic programming approach to collision avoidance has been developed to optimize and generate logics that are robust to the complex dynamics of the national airspace. The current approach represents the aircraft avoidance problem as Markov Decision Processes and independently optimizes a horizontal and vertical maneuver avoidance logics. This is a result of the current memory requirements for each logic, simply combining the logics will result in a significantly larger representation. The "curse of dimensionality" makes it computationally inefficient and unfeasible to optimize this larger representation. However, existing and future collision avoidance systems have mostly defined the decision process by hand. In response, a simulation-based framework was built to better understand how each potential state quantifies the aircraft avoidance problem with regards to safety and operational components. The framework leverages recent advances in signals processing and database, while enabling the highest fidelity analysis of Monte Carlo aircraft encounter simulations to date. This framework enabled the calculation of how well each state of the decision process quantifies the collision risk and the associated memory requirements. Using this analysis, a collision avoidance logic that leverages both horizontal and vertical actions was built and optimized using this simulation based approach

    A Real-Time Predictive Vehicular Collision Avoidance System on an Embedded General-Purpose GPU

    Get PDF
    Collision avoidance is an essential capability for autonomous and assisted-driving ground vehicles. In this work, we developed a novel model predictive control based intelligent collision avoidance (CA) algorithm for a multi-trailer industrial ground vehicle implemented on a General Purpose Graphical Processing Unit (GPGPU). The CA problem is formulated as a multi-objective optimal control problem and solved using a limited look-ahead control scheme in real-time. Through hardware-in-the-loop-simulations and experimental results obtained in this work, we have demonstrated that the proposed algorithm, using NVIDA’s CUDA framework and the NVIDIA Jetson TX2 development platform, is capable of dynamically assisting drivers and maintaining the vehicle a safe distance from the detected obstacles on-thely. We have demonstrated that a GPGPU, paired with an appropriate algorithm, can be the key enabler in relieving the computational burden that is commonly associated with model-based control problems and thus make them suitable for real-time applications

    Initial Investigation of Operational Concept Elements for NASA's NextGen-Airportal Project Research

    Get PDF
    The NextGen-Airportal Project is organized into three research focus areas: Safe and Efficient Surface Operations, Coordinated Arrival/Departure Operations Management, and Airportal Transition and Integration Management. The content in this document was derived from an examination of constraints and problems at airports for accommodating future increases in air traffic, and from an examination of capabilities envisioned for NextGen. The concepts are organized around categories of constraints and problems and therefore do not precisely match, but generally reflect, the research focus areas. The concepts provide a framework for defining and coordinating research activities that are, and will be, conducted by the NextGen-Airportal Project. The concepts will help the research activities function as an integrated set focused on future needs for airport operations and will aid aligning the research activities with NextGen key capabilities. The concepts are presented as concept elements with more detailed sub-elements under each concept element. For each concept element, the following topics are discussed: constraints and problems being addressed, benefit descriptions, required technology and infrastructure, and an initial list of potential research topics. Concept content will be updated and more detail added as the research progresses. The concepts are focused on enhancing airportal capacity and efficiency in a timeframe 20 to 25 years in the future, which is similar to NextGen's timeframe

    Fully automated urban traffic system

    Get PDF
    The replacement of the driver with an automatic system which could perform the functions of guiding and routing a vehicle with a human's capability of responding to changing traffic demands was discussed. The problem was divided into four technological areas; guidance, routing, computing, and communications. It was determined that the latter three areas being developed independent of any need for fully automated urban traffic. A guidance system that would meet system requirements was not being developed but was technically feasible

    UAS in the Airspace: A Review on Integration, Simulation, Optimization, and Open Challenges

    Full text link
    Air transportation is essential for society, and it is increasing gradually due to its importance. To improve the airspace operation, new technologies are under development, such as Unmanned Aircraft Systems (UAS). In fact, in the past few years, there has been a growth in UAS numbers in segregated airspace. However, there is an interest in integrating these aircraft into the National Airspace System (NAS). The UAS is vital to different industries due to its advantages brought to the airspace (e.g., efficiency). Conversely, the relationship between UAS and Air Traffic Control (ATC) needs to be well-defined due to the impacts on ATC capacity these aircraft may present. Throughout the years, this impact may be lower than it is nowadays because the current lack of familiarity in this relationship contributes to higher workload levels. Thereupon, the primary goal of this research is to present a comprehensive review of the advancements in the integration of UAS in the National Airspace System (NAS) from different perspectives. We consider the challenges regarding simulation, final approach, and optimization of problems related to the interoperability of such systems in the airspace. Finally, we identify several open challenges in the field based on the existing state-of-the-art proposals

    Urban Drone Navigation: Autoencoder Learning Fusion for Aerodynamics

    Full text link
    Drones are vital for urban emergency search and rescue (SAR) due to the challenges of navigating dynamic environments with obstacles like buildings and wind. This paper presents a method that combines multi-objective reinforcement learning (MORL) with a convolutional autoencoder to improve drone navigation in urban SAR. The approach uses MORL to achieve multiple goals and the autoencoder for cost-effective wind simulations. By utilizing imagery data of urban layouts, the drone can autonomously make navigation decisions, optimize paths, and counteract wind effects without traditional sensors. Tested on a New York City model, this method enhances drone SAR operations in complex urban settings.Comment: 47 page

    A Concept for Robust, High Density Terminal Air Traffic Operations

    Get PDF
    This paper describes a concept for future high-density, terminal air traffic operations that has been developed by interpreting the Joint Planning and Development Office s vision for the Next Generation (NextGen) Air Transportation System and coupling it with emergent NASA and other technologies and procedures during the NextGen timeframe. The concept described in this paper includes five core capabilities: 1) Extended Terminal Area Routing, 2) Precision Scheduling Along Routes, 3) Merging and Spacing, 4) Tactical Separation, and 5) Off-Nominal Recovery. Gradual changes are introduced to the National Airspace System (NAS) by phased enhancements to the core capabilities in the form of increased levels of automation and decision support as well as targeted task delegation. NASA will be evaluating these conceptual technological enhancements in a series of human-in-the-loop simulations and will accelerate development of the most promising capabilities in cooperation with the FAA through the Efficient Flows Into Congested Airspace Research Transition Team
    • …
    corecore