2,412 research outputs found

    Optimal Vaccine Distribution Strategy for Different Age Groups of Population: A Differential Evolution Algorithm Approach

    Get PDF
    Vaccination is one of the effective ways for protecting susceptible individuals from infectious diseases. Different age groups of population have different vulnerability to the disease and different contact frequencies. In order to achieve the maximum effects, the distribution of vaccine doses to the groups of individuals needs to be optimized. In this paper, a differential evolution (DE) algorithm is proposed to address the problem. The performance of the proposed algorithm has been tested by a classical infectious disease transmission model and a series of simulations have been made. The results show that the proposed algorithm can always obtain the best vaccine distribution strategy which can minimize the number of infectious individuals during the epidemic outbreak. Furthermore, the effects of vaccination on different days and the vaccine coverage percentages have also been discussed

    Bayesian Best-Arm Identification for Selecting Influenza Mitigation Strategies

    Full text link
    Pandemic influenza has the epidemic potential to kill millions of people. While various preventive measures exist (i.a., vaccination and school closures), deciding on strategies that lead to their most effective and efficient use remains challenging. To this end, individual-based epidemiological models are essential to assist decision makers in determining the best strategy to curb epidemic spread. However, individual-based models are computationally intensive and it is therefore pivotal to identify the optimal strategy using a minimal amount of model evaluations. Additionally, as epidemiological modeling experiments need to be planned, a computational budget needs to be specified a priori. Consequently, we present a new sampling technique to optimize the evaluation of preventive strategies using fixed budget best-arm identification algorithms. We use epidemiological modeling theory to derive knowledge about the reward distribution which we exploit using Bayesian best-arm identification algorithms (i.e., Top-two Thompson sampling and BayesGap). We evaluate these algorithms in a realistic experimental setting and demonstrate that it is possible to identify the optimal strategy using only a limited number of model evaluations, i.e., 2-to-3 times faster compared to the uniform sampling method, the predominant technique used for epidemiological decision making in the literature. Finally, we contribute and evaluate a statistic for Top-two Thompson sampling to inform the decision makers about the confidence of an arm recommendation

    Literature review: The vaccine supply chain

    Get PDF
    Vaccination is one of the most effective ways to prevent and/or control the outbreak of infectious diseases. This medical intervention also brings about many logistical questions. In the past years, the Operations Research/Operations Management community has shown a growing interest in the logistical aspects of vaccination. However, publications on vaccine logistics often focus on one specific logistical aspect. A broader framework is needed so that open research questions can be identified more easily and contributions are not overlooked.In this literature review, we combine the priorities of the World Health Organization for creating a flexible and robust vaccine supply chain with an Operations Research/Operations Management supply chain perspective. We propose a classification for the literature on vaccine logistics to structure this relatively new field, and identify promising research directions. We classify the literature into the following four components: (1) product, (2) production, (3) allocation, and (4) distribution. Within the supply chain classification, we analyze the decision problems for existing outbreaks versus sudden outbreaks and developing countries versus developed countries. We identify unique characteristics of the vaccine supply chain: high uncertainty in both supply and demand; misalignment of objectives and decentralized decision making between supplier, public health organization and end customer; complex political decisions concerning allocation and the crucial

    Prioritizing COVID-19 vaccine allocation in resource poor settings: Towards an Artificial Intelligence-enabled and Geospatial-assisted decision support framework.

    Get PDF
    OBJECTIVES: To propose a novel framework for COVID-19 vaccine allocation based on three components of Vulnerability, Vaccination, and Values (3Vs). METHODS: A combination of geospatial data analysis and artificial intelligence methods for evaluating vulnerability factors at the local level and allocate vaccines according to a dynamic mechanism for updating vulnerability and vaccine uptake. RESULTS: A novel approach is introduced including (I) Vulnerability data collection (including country-specific data on demographic, socioeconomic, epidemiological, healthcare, and environmental factors), (II) Vaccination prioritization through estimation of a unique Vulnerability Index composed of a range of factors selected and weighed through an Artificial Intelligence (AI-enabled) expert elicitation survey and scientific literature screening, and (III) Values consideration by identification of the most effective GIS-assisted allocation of vaccines at the local level, considering context-specific constraints and objectives. CONCLUSIONS: We showcase the performance of the 3Vs strategy by comparing it to the actual vaccination rollout in Kenya. We show that under the current strategy, socially vulnerable individuals comprise only 45% of all vaccinated people in Kenya while if the 3Vs strategy was implemented, this group would be the first to receive vaccines
    • …
    corecore