1,064 research outputs found

    An Intelligent Framework for Energy-Aware Mobile Computing Subject to Stochastic System Dynamics

    Get PDF
    abstract: User satisfaction is pivotal to the success of mobile applications. At the same time, it is imperative to maximize the energy efficiency of the mobile device to ensure optimal usage of the limited energy source available to mobile devices while maintaining the necessary levels of user satisfaction. However, this is complicated due to user interactions, numerous shared resources, and network conditions that produce substantial uncertainty to the mobile device's performance and power characteristics. In this dissertation, a new approach is presented to characterize and control mobile devices that accurately models these uncertainties. The proposed modeling framework is a completely data-driven approach to predicting power and performance. The approach makes no assumptions on the distributions of the underlying sources of uncertainty and is capable of predicting power and performance with over 93% accuracy. Using this data-driven prediction framework, a closed-loop solution to the DEM problem is derived to maximize the energy efficiency of the mobile device subject to various thermal, reliability and deadline constraints. The design of the controller imposes minimal operational overhead and is able to tune the performance and power prediction models to changing system conditions. The proposed controller is implemented on a real mobile platform, the Google Pixel smartphone, and demonstrates a 19% improvement in energy efficiency over the standard frequency governor implemented on all Android devices.Dissertation/ThesisDoctoral Dissertation Computer Engineering 201

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Workload characterization and synthesis for data center optimization

    Get PDF

    Supply Chain Planning with Incremental Development, Modular Design, and Evolutionary Updates

    Get PDF
    Proceedings Paper (for Acquisition Research Program)The policy specified by DoDI 5000.02 (DoD, 2008, December 8) prescribes an evolutionary acquisition strategy. Products with long lifecycles such as torpedoes, evolutionary updates via incremental development, modular design updates, technology refreshes, technology insertions, and Advanced Processor Builds are all in play at the same time. Various functional elements of the weapon system are often redesigned during the lifecycle to meet evolving requirements. Component obsolescence and failures must also be anticipated and addressed in upgrade planning. Within each weapon system''s evolutionary acquisition, cycle-changing requirements may expose weaknesses that have to be rectified across the inventory. New acquisition paradigms such as modular design have to be introduced into the supply chain while maintaining inventory levels of previously designed weapons at a high level of readiness. Thus, a diverse set of requirements must be satisfied with a finite set of resources. The acquisition policy does not provide guidance on how to address cross-coordination and optimization of project resources. This paper explores decision models for balancing conflicting demands and discusses the application of how these models address cross-coordination and optimization of project resources in the torpedo acquisition process while keeping the weapon''s efficiency and inventory effectiveness at or above minimum specified levels.Naval Postgraduate School Acquisition Research ProgramApproved for public release; distribution is unlimited

    Multi-Quality Auto-Tuning by Contract Negotiation

    Get PDF
    A characteristic challenge of software development is the management of omnipresent change. Classically, this constant change is driven by customers changing their requirements. The wish to optimally leverage available resources opens another source of change: the software systems environment. Software is tailored to specific platforms (e.g., hardware architectures) resulting in many variants of the same software optimized for different environments. If the environment changes, a different variant is to be used, i.e., the system has to reconfigure to the variant optimized for the arisen situation. The automation of such adjustments is subject to the research community of self-adaptive systems. The basic principle is a control loop, as known from control theory. The system (and environment) is continuously monitored, the collected data is analyzed and decisions for or against a reconfiguration are computed and realized. Central problems in this field, which are addressed in this thesis, are the management of interdependencies between non-functional properties of the system, the handling of multiple criteria subject to decision making and the scalability. In this thesis, a novel approach to self-adaptive software--Multi-Quality Auto-Tuning (MQuAT)--is presented, which provides design and operation principles for software systems which automatically provide the best possible utility to the user while producing the least possible cost. For this purpose, a component model has been developed, enabling the software developer to design and implement self-optimizing software systems in a model-driven way. This component model allows for the specification of the structure as well as the behavior of the system and is capable of covering the runtime state of the system. The notion of quality contracts is utilized to cover the non-functional behavior and, especially, the dependencies between non-functional properties of the system. At runtime the component model covers the runtime state of the system. This runtime model is used in combination with the contracts to generate optimization problems in different formalisms (Integer Linear Programming (ILP), Pseudo-Boolean Optimization (PBO), Ant Colony Optimization (ACO) and Multi-Objective Integer Linear Programming (MOILP)). Standard solvers are applied to derive solutions to these problems, which represent reconfiguration decisions, if the identified configuration differs from the current. Each approach is empirically evaluated in terms of its scalability showing the feasibility of all approaches, except for ACO, the superiority of ILP over PBO and the limits of all approaches: 100 component types for ILP, 30 for PBO, 10 for ACO and 30 for 2-objective MOILP. In presence of more than two objective functions the MOILP approach is shown to be infeasible
    • …
    corecore