36 research outputs found

    Optimizing HARQ and relay strategies in limited feedback communication systems

    Get PDF
    One of the key challenges for future communication systems is to deal with fast changing channels due to the mobility of users. Having a robust protocol capable of handling transmission failures in unfavorable channel conditions is crucial, but the feedback capacity may be greatly limited due to strict latency requirements. This paper studies the hybrid automatic repeat request (HARQ) techniques involved in re-transmissions when decoding failures occur at the receiver and proposes a scheme that relies on codeword bundling and adaptive incremental redundancy (IR) to maximize the overall throughput in a limited feedback system. In addition to the traditional codeword extension IR bits, this paper introduces a new type of IR, bundle parity bits, obtained from an erasure code across all the codewords in a bundle. The type and number of IR bits to be sent as a response to a decoding failure is optimized through a Markov Decision Process. In addition to the single link analysis, the paper studies how the same techniques generalize to relay and multi-user broadcast systems. Simulation results show that the proposed schemes can provide a significant increase in throughput over traditional HARQ techniques

    Bit-Interleaved Coded Modulation

    Get PDF

    Near-capacity fixed-rate and rateless channel code constructions

    No full text
    Fixed-rate and rateless channel code constructions are designed for satisfying conflicting design tradeoffs, leading to codes that benefit from practical implementations, whilst offering a good bit error ratio (BER) and block error ratio (BLER) performance. More explicitly, two novel low-density parity-check code (LDPC) constructions are proposed; the first construction constitutes a family of quasi-cyclic protograph LDPC codes, which has a Vandermonde-like parity-check matrix (PCM). The second construction constitutes a specific class of protograph LDPC codes, which are termed as multilevel structured (MLS) LDPC codes. These codes possess a PCM construction that allows the coexistence of both pseudo-randomness as well as a structure requiring a reduced memory. More importantly, it is also demonstrated that these benefits accrue without any compromise in the attainable BER/BLER performance. We also present the novel concept of separating multiple users by means of user-specific channel codes, which is referred to as channel code division multiple access (CCDMA), and provide an example based on MLS LDPC codes. In particular, we circumvent the difficulty of having potentially high memory requirements, while ensuring that each user’s bits in the CCDMA system are equally protected. With regards to rateless channel coding, we propose a novel family of codes, which we refer to as reconfigurable rateless codes, that are capable of not only varying their code-rate but also to adaptively modify their encoding/decoding strategy according to the near-instantaneous channel conditions. We demonstrate that the proposed reconfigurable rateless codes are capable of shaping their own degree distribution according to the nearinstantaneous requirements imposed by the channel, but without any explicit channel knowledge at the transmitter. Additionally, a generalised transmit preprocessing aided closed-loop downlink multiple-input multiple-output (MIMO) system is presented, in which both the channel coding components as well as the linear transmit precoder exploit the knowledge of the channel state information (CSI). More explicitly, we embed a rateless code in a MIMO transmit preprocessing scheme, in order to attain near-capacity performance across a wide range of channel signal-to-ratios (SNRs), rather than only at a specific SNR. The performance of our scheme is further enhanced with the aid of a technique, referred to as pilot symbol assisted rateless (PSAR) coding, whereby a predetermined fraction of pilot bits is appropriately interspersed with the original information bits at the channel coding stage, instead of multiplexing pilots at the modulation stage, as in classic pilot symbol assisted modulation (PSAM). We subsequently demonstrate that the PSAR code-aided transmit preprocessing scheme succeeds in gleaning more information from the inserted pilots than the classic PSAM technique, because the pilot bits are not only useful for sounding the channel at the receiver but also beneficial for significantly reducing the computational complexity of the rateless channel decoder

    Capacity -based parameter optimization of bandwidth constrained CPM

    Get PDF
    Continuous phase modulation (CPM) is an attractive modulation choice for bandwidth limited systems due to its small side lobes, fast spectral decay and the ability to be noncoherently detected. Furthermore, the constant envelope property of CPM permits highly power efficient amplification. The design of bit-interleaved coded continuous phase modulation is characterized by the code rate, modulation order, modulation index, and pulse shape. This dissertation outlines a methodology for determining the optimal values of these parameters under bandwidth and receiver complexity constraints. The cost function used to drive the optimization is the information-theoretic minimum ratio of energy-per-bit to noise-spectral density found by evaluating the constrained channel capacity. The capacity can be reliably estimated using Monte Carlo integration. A search for optimal parameters is conducted over a range of coded CPM parameters, bandwidth efficiencies, and channels. Results are presented for a system employing a trellis-based coherent detector. To constrain complexity and allow any modulation index to be considered, a soft output differential phase detector has also been developed.;Building upon the capacity results, extrinsic information transfer (EXIT) charts are used to analyze a system that iterates between demodulation and decoding. Convergence thresholds are determined for the iterative system for different outer convolutional codes, alphabet sizes, modulation indices and constellation mappings. These are used to identify the code and modulation parameters with the best energy efficiency at different spectral efficiencies for the AWGN channel. Finally, bit error rate curves are presented to corroborate the capacity and EXIT chart designs

    A Framework for Low-Complexity Iterative Interference Cancellation in Communication Systems

    Get PDF
    Thesis Supervisor: Gregory W. Wornell Title: ProfessorCommunication over interference channels poses challenges not present for the more traditional additive white Gaussian noise (AWGN) channels. In order to approach the information limits of an interference channel, interference mitigation techniques need to be integrated with channel coding and decoding techniques. This thesis develops such practical schemes when the transmitter has no knowledge of the channel. The interference channel model we use is described by r = Hx + w, where r is the received vector, H is an interference matrix, x is the transmitted vector of data symbols chosen from a finite set, and w is a noise vector. The objective at the receiver is to detect the most likely vector x that was transmitted based on knowledge of r, H, and the statistics of w. Communication contexts in which this general integer programming problem appears include the equalization of intersymbol interference (ISI) channels, the cancellation of multiple-access interference (MAI) in code-division multiple-access (CDMA) systems, and the decoding of multiple-input multiple-output (MIMO) systems in fading environments. We begin by introducing mode-interleaved precoding, a transmitter precoding technique that conditions an interference channel so that the pairwise error probability of any two transmit vectors becomes asymptotically equal to the pairwise error probability of the same vectors over an AWGN channel at the same signal-to-noise ratio (SNR). While mode-interleaved precoding dramatically increases the complexity of exact ML detection, we develop iterated-decision detection to mitigate this complexity problem. Iterateddecision detectors use optimized multipass algorithms to successively cancel interference from r and generate symbol decisions whose reliability increases monotonically with each iteration. When used in uncoded systems with mode-interleaved precoding, iterated-decision detectors asymptotically achieve the performance ofML detection (and thus the interferencefree lower bound) with considerably lower complexity. We interpret these detectors as low-complexity approximations to message-passing algorithms. The integration of iterated-decision detectors into communication systems with coding is also developed to approach information rates close to theoretical limits. We present joint detection and decoding algorithms based on the iterated-decision detector with modeinterleaved precoding, and also develop analytic tools to predict the behavior of such systems. We discuss the use of binary codes for channels that support low information rates, and multilevel codes and lattice codes for channels that support higher information ratesHewlett-Packard under the MIT/HPAlliance, the National Science Foundation, the Semiconductor Research Corporation, Texas Instruments through the Leadership Universities Program, and the Natural Sciences and Engineering Research Council of Canada (NSERC) Postgraduate Scholarship Program

    Bit-Wise Decoders for Coded Modulation and Broadcast Coded Slotted ALOHA

    Get PDF
    This thesis deals with two aspects of wireless communications. The first aspect is about efficient point-to-point data transmission. To achieve high spectral efficiency, coded modulation, which is a concatenation of higher order modulation with error correction coding, is used. Bit-interleaved coded modulation (BICM) is a pragmatic approach to coded modulation, where soft information on encoded bits is calculated at the receiver and passed to a bit-wise decoder. Soft information is usually obtained in the form of log-likelihood ratios (also known as L-values), calculated using the max-log approximation. In this thesis, we analyze bit-wise decoders for pulse-amplitude modulation (PAM) constellations over the additive white Gaussian noise (AWGN) channel when the max-log approximation is used for calculating L-values. First, we analyze BICM systems from an information theoretic perspective. We prove that the max-log approximation causes information loss for all PAM constellations and labelings with the exception of a symmetric 4-PAM constellation labeled with a Gray code. We then analyze how the max-log approximation affects the generalized mutual information (GMI), which is an achievable rate for a standard BICM decoder. Second, we compare the performance of the standard BICM decoder with that of the ML decoder. We show that, when the signal-to-noise ratio (SNR) goes to infinity, the loss in terms of pairwise error probability is bounded by 1.25 dB for any two codewords. The analysis further shows that the loss is zero for a wide range of linear codes. The second aspect of wireless communications treated in this thesis is multiple channel access. Our main objective here is to provide reliable message exchange between nodes in a wireless ad hoc network with stringent delay constraints. To that end, we propose an uncoordinated medium access control protocol, termed all-to-all broadcast coded slotted ALOHA (B-CSA), that exploits coding over packets at the transmitter side and successive interference cancellation at the receiver side. The protocol resembles low-density parity-check codes and can be analyzed using the theory of codes on graphs. The packet loss rate performance of the protocol exhibits a threshold behavior with distinct error floor and waterfall regions. We derive a tight error floor approximation that is used for the optimization of the protocol. We also show how the error floor approximation can be used to design protocols for networks, where users have different reliability requirements. We use B-CSA in vehicular networks and show that it outperforms carrier sense multiple access currently adopted as the MAC protocol for vehicular communications. Finally, we investigate the possibility of establishing a handshake in vehicular networks by means of B-CSA

    A framework for low-complexity iterative interference cancellation in communication systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 211-215).Communication over interference channels poses challenges not present for the more traditional additive white Gaussian noise (AWGN) channels. In order to approach the information limits of an interference channel, interference mitigation techniques need to be integrated with channel coding and decoding techniques. This thesis develops such practical schemes when the transmitter has no knowledge of the channel. The interference channel model we use is described by r = Hx + w, where r is the received vector, H is an interference matrix, x is the transmitted vector of data symbols chosen from a finite set, and w is a noise vector. The objective at the receiver is to detect the most likely vector x that was transmitted based on knowledge of r, H, and the statistics of w. Communication contexts in which this general integer programming problem appears include the equalization of intersymbol interference (ISI) channels, the cancellation of multiple-access interference (MAI) in code-division multiple-access (CDMA) systems, and the decoding of multiple-input multiple-output (MIMO) systems in fading environments. We begin by introducing mode-interleaved precoding, a transmitter preceding technique that conditions an interference channel so that the pairwise error probability of any two transmit vectors becomes asymptotically equal to the pairwise error probability of the same vectors over an AWGN channel at the same signal-to-noise ratio (SNR). While mode-interleaved precoding dramatically increases the complexity of exact ML detection, we develop iterated-decision detection to mitigate this complexity problem. Iterated-decision detectors use optimized multipass algorithms to successively cancel interference from r and generate symbol(cont.) decisions whose reliability increases monotonically with each iteration. When used in uncoded systems with mode-interleaved preceding, iterated-decision detectors asyrmptotically achieve the performance of ML detection (and thus the interference-free lower bound) with considerably lower complexity. We interpret these detectors as low-complexity approximations to message-passing algorithms. The integration of iterated-decision detectors into communication systems with coding is also developed to approach information rates close to theoretical limits. We present joint detection and decoding algorithms based on the iterated-decision detector with mode-interleaved precoding, and also develop analytic tools to predict the behavior of such systems. We discuss the use of binary codes for channels that support low information rates, and multilevel codes and lattice codes for channels that support higher information rates.by Albert M. Chan.Ph.D
    corecore