497 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From Communications to Sensing and Intelligence

    Full text link
    Due to the advancements in cellular technologies and the dense deployment of cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the fifth-generation (5G) and beyond cellular networks is a promising solution to achieve safe UAV operation as well as enabling diversified applications with mission-specific payload data delivery. In particular, 5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in three-dimensional (3D) space. On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference. Besides the requirement of high-performance wireless communications, the ability to support effective and efficient sensing as well as network intelligence is also essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting aerial and ground users. In this paper, we provide a comprehensive overview of the latest research efforts on integrating UAVs into cellular networks, with an emphasis on how to exploit advanced techniques (e.g., intelligent reflecting surface, short packet transmission, energy harvesting, joint communication and radar sensing, and edge intelligence) to meet the diversified service requirements of next-generation wireless systems. Moreover, we highlight important directions for further investigation in future work.Comment: Accepted by IEEE JSA

    Introducing reinforcement learning in the Wi-Fi MAC layer to support sustainable communications in e-Health scenarios

    Get PDF
    The crisis of energy supplies has led to the need for sustainability in technology, especially in the Internet of Things (IoT) paradigm. One solution is the integration of Energy Harvesting (EH) technologies into IoT systems, which reduces the amount of battery replacement. However, integrating EH technologies within IoT systems is challenging, and it requires adaptations at different layers of the IoT protocol stack, especially at Medium Access Control (MAC) layer due to its energy-hungry features. Since Wi-Fi is a widely used wireless technology in IoT systems, in this paper, we perform an extensive set of simulations in a dense solar-based energy-harvesting Wi-Fi network in an e-Health environment. We introduce optimization algorithms, which benefit from the Reinforcement Learning (RL) methods to efficiently adjust to the complexity and dynamic behaviour of the network. We assume the concept of Access Point (AP) coordination to demonstrate the feasibility of the upcoming Wi-Fi amendment IEEE 802.11bn (Wi-Fi 8). This paper shows that the proposed algorithms reduce the network&amp;#x2019;s energy consumption by up to 25% compared to legacy Wi-Fi while maintaining the required Quality of Service (QoS) for e-Health applications. Moreover, by considering the specific adjustment of MAC layer parameters, up to 37% of the energy of the network can be conserved, which illustrates the viability of reducing the dimensions of solar cells, while concurrently augmenting the flexibility of this EH technique for deployment within the IoT devices. We anticipate this research will shed light on new possibilities for IoT energy harvesting integration, particularly in contexts with restricted QoS environments such as e-Healthcare.</p

    True-data Testbed for 5G/B5G Intelligent Network

    Full text link
    Future beyond fifth-generation (B5G) and sixth-generation (6G) mobile communications will shift from facilitating interpersonal communications to supporting Internet of Everything (IoE), where intelligent communications with full integration of big data and artificial intelligence (AI) will play an important role in improving network efficiency and providing high-quality service. As a rapid evolving paradigm, the AI-empowered mobile communications demand large amounts of data acquired from real network environment for systematic test and verification. Hence, we build the world's first true-data testbed for 5G/B5G intelligent network (TTIN), which comprises 5G/B5G on-site experimental networks, data acquisition & data warehouse, and AI engine & network optimization. In the TTIN, true network data acquisition, storage, standardization, and analysis are available, which enable system-level online verification of B5G/6G-orientated key technologies and support data-driven network optimization through the closed-loop control mechanism. This paper elaborates on the system architecture and module design of TTIN. Detailed technical specifications and some of the established use cases are also showcased.Comment: 12 pages, 10 figure
    corecore