597 research outputs found

    Neurite imaging reveals microstructural variations in human cerebral cortical gray matter

    Get PDF
    We present distinct patterns of neurite distribution in the human cerebral cortex using diffusion magnetic resonance imaging (MRI). We analyzed both high-resolution structural (T1w and T2w images) and diffusion MRI data in 505 subjects from the Human Connectome Project. Neurite distributions were evaluated using the neurite orientation dispersion and density imaging (NODDI) model, optimized for gray matter, and mapped onto the cortical surface using a method weighted towards the cortical mid-thickness to reduce partial volume effects. The estimated neurite density was high in both somatosensory and motor areas, early visual and auditory areas, and middle temporal area (MT), showing a strikingly similar distribution to myelin maps estimated from the T1w/T2w ratio. The estimated neurite orientation dispersion was particularly high in early sensory areas, which are known for dense tangential fibers and are classified as granular cortex by classical anatomists. Spatial gradients of these cortical neurite properties revealed transitions that colocalize with some areal boundaries in a recent multi-modal parcellation of the human cerebral cortex, providing mutually supportive evidence. Our findings indicate that analyzing the cortical gray matter neurite morphology using diffusion MRI and NODDI provides valuable information regarding cortical microstructure that is related to but complementary to myeloarchitecture

    MRI quantification of multiple sclerosis pathology

    Get PDF
    Background: Multiple sclerosis (MS) is a chronic neuroinflammatory and neurodegenerative disease and a common cause of neurologic disability. MS pathology is characterized by demyelination, neuroaxonal loss and atrophy. Magnetic Resonance Imaging (MRI) is an essential tool in diagnosing and monitoring MS, but its clinical value could be even further expanded by more advanced and quantitative MRI methods, which may also provide additional pathophysiological insights. Purpose: The overall aim of this thesis was to quantify MS pathology using volumetric brain MRI, ultra-high field brain and cervical spinal cord MRI as well as a newly developed rapid myelin imaging technique in relation to cognitive and physical MS disability. Study I, a prospective 17-year longitudinal study of 37 MS participants with 23 age/sex- matched healthy controls for comparison at the last follow-up. Longitudinal volumetric brain 1.5 Tesla MRI during the second half of the study showed that lesion accumulation and corpus callosum atrophy were the most strongly associated neuroanatomical correlates of cognitive disability, with the lesion fraction being an independent predictor of cognitive performance 8.5 years later. Study II, a prospective cross-sectional study of 35 MS participants and 11 age-matched healthy controls using 3 and 7 Tesla MRI. The study demonstrated involvement of both grey and white matter in MS, not only the brain but also the cervical spinal cord, associated with MS disability. Lesions appeared in proximity to the cerebrospinal fluid (CSF), with special predilection to the periventricular and grey matter surrounding the central canal in secondary progressive MS. Study III, a prospective in vivo (71 MS participants and 21 age/sex-matched healthy controls) and ex vivo (brain tissue from 3 MS donors) study at 3 Tesla, showed that a new clinically approved and feasible rapid myelin imaging technique correlates well with myelin stainings and produces robust in vivo myelin quantification that is related to both current and future cognitive and physical disability in MS. Study IV, an in-depth topographical analysis based on Study III, mapped the distribution of demyelination, both in vivo and ex vivo, in the periventricular and perilesional regions of the brain. A gradient of demyelination with predominance near the CSF spaces was seen. Measures of clinical disability were consistently and more strongly associated with the myelin content in normal-appearing tissue compared to the intralesional myelin content. Conclusions: Lesions and atrophy contribute to cognitive and physical disability in MS but to a varying degree, likely dependent on the relative involvement of white vs. grey matter. Both focal lesions/demyelination as well as diffuse demyelination in normal-appearing white matter shows an apparent gradient from the CSF, which differ between relapsing-remitting and progressive MS subtypes/phases. The growing utility and clinical availability of advanced and quantitative MRI techniques holds promise for improved monitoring of MS pathology and likely represents a vital tool for assessing the efficacy of potential remyelinating/reparative therapies in MS

    Applicability of multiple quantitative magnetic resonance methods in genetic brain white matter disorders

    Get PDF
    Background and purpose: Magnetic resonance imaging (MRI) measures of tissue microstructure are important for monitoring brain white matter (WM) disorders like leukodystrophies and multiple sclerosis. They should be sensitive to underlying pathological changes. Three whole-brain isotropic quantitative methods were applied and compared within a cohort of controls and leukodystrophy patients: two novel myelin water imaging (MWI) techniques (multi-compartment relaxometry diffusion-informed MWI: MCR-DIMWI, and multi-echo T2 relaxation imaging with compressed sensing: METRICS) and neurite orientation dispersion and density imaging (NODDI).// Methods: For 9 patients with different leukodystrophies (age range 0.4-62.4 years) and 15 control subjects (2.3-61.3 years), T1-weighted MRI, fluid-attenuated inversion recovery, multi-echo gradient echo with variable flip angles, METRICS, and multi-shell diffusion-weighted imaging were acquired on 3 Tesla. MCR-DIMWI, METRICS, NODDI, and quality control measures were extracted to evaluate differences between patients and controls in WM and deep gray matter (GM) regions of interest (ROIs). Pearson correlations, effect size calculations, and multi-level analyses were performed.// Results: MCR-DIMWI and METRICS-derived myelin water fractions (MWFs) were lower and relaxation times were higher in patients than in controls. Effect sizes of MWF values and relaxation times were large for both techniques. Differences between patients and controls were more pronounced in WM ROIs than in deep GM. MCR-DIMWI-MWFs were more homogeneous within ROIs and more bilaterally symmetrical than METRICS-MWFs. The neurite density index was more sensitive in detecting differences between patients and controls than fractional anisotropy. Most measures obtained from MCR-DIMWI, METRICS, NODDI, and diffusion tensor imaging correlated strongly with each other.// Conclusion: This proof-of-concept study shows that MCR-DIMWI, METRICS, and NODDI are sensitive techniques to detect changes in tissue microstructure in WM disorders

    Consensus Recommendations of the Multiple Sclerosis Study Group and the Portuguese Neuroradiological Society for the Use of Magnetic Resonance Imaging in Multiple Sclerosis in Clinical Practice: Part 2

    Get PDF
    INTRODUCTION: Magnetic resonance imaging is recognized as the most important diagnostic test in the diagnosis of multiple sclerosis, differential diagnosis and evaluation of progression/therapeutic response. However, to make optimal use of magnetic resonance imaging in multiple sclerosis, the use of a standard, reproducible and comparable imaging protocol is of uttermost importance. In this context, the Portuguese Society of Neuroradiology and the Group of Studies of Multiple Sclerosis, after a joint discussion, appointed a committee of experts to create recommendations adapted to the national reality on the use of magnetic resonance imaging in multiple sclerosis. This document represents the second part of the first Portuguese consensus recommendations on the use of magnetic resonance imaging in multiple sclerosis in clinical practice. MATERIAL AND METHODS: The Portuguese Society of Neuroradiology and the Group of Studies of Multiple Sclerosis, after discussing the topic in national meetings and after a working group meeting held in Figueira da Foz, May 2017, appointed a committee of experts that have developed several standard protocols on the use of magnetic resonance imaging on multiple sclerosis by consensus. The document obtained was based on the best scientific evidence and expert opinion. Portuguese multiple sclerosis consultants and departments of neuroradiology scrutinized and reviewed the consensus paper; comments and suggestions were considered. Standardized strategies of magnetic resonance imaging referral in clinical practice for diagnosis and follow-up of multiple sclerosis were published in the first part of this paper. RESULTS: We provide magnetic resonance imaging acquisition protocols regarding multiple sclerosis diagnostic and monitoring and the information to be included in the report for application across Portuguese healthcare institutions. CONCLUSION: We hope that these first Portuguese magnetic resonance imaging guidelines will contribute to optimize multiple sclerosis management and improve patient care in Portugal.info:eu-repo/semantics/publishedVersio

    Magnetic resonance imaging of brain tissue abnormalities: transverse relaxation time in autism and Tourette syndrome and development of a novel whole-brain myelin mapping technique

    Get PDF
    The transverse relaxation time (T2) is a fundamental parameter of magnetic resonance imaging sensitive to tissue microstructure and water content, thus offering a non-invasive approach to evaluate abnormalities of brain tissue in-vivo. Prevailing hypotheses of two childhood psychiatric disorders were tested using quantitative T2 imaging and automated region of interest (ROI) analyses. In autism, the under-connectivity theory, which proposes aberrant connectivity within white matter (WM) was assessed, finding T2 to be eleveted in the frontal and parietal lobes, while dividing whole brain data into neurodevelopmentally relevant WM ROIs found increased T2 in bridging and radiate WM. In Tourette syndrome, tissue abnormalities of deep gray matter structures implicated in the symptomology of this disorder were evaluated and increased T2 of the caudate was found. Despite the sensitivity of quantitative T2 measurements to underlying pathophysiology, interpretation remain difficult. However, in WM, the compartmentalization of distinct water environments may lead to the detection of multi-exponential T2 decay. The metric of interest is principally the myelin water fraction (MWF), which is the proportion of the MRI signal arising from water trapped within layers of the myelin sheath. As a proof of concept study, the ability to measure the MWF based on T2* decay was evaluated and compared to a MWF measurements obtained from T2 decay. Data were analysed using both non-negative least squares and a two-pool model. Signal losses near sources of magnetic field inhomogeneity, such as the sinuses, rendered T2* components inseparable, invalidating this approach for whole brain MWF measurements. However, this study demonstrated the suitability of a two-pool model to calculate the MWF in WM. A novel approach, based on the multi-component gradient echo sampling of spin echoes (mcGESSE) and a two-pool model of WM, is proposed and its feasibility demonstrated using simulations. The in-vivo implementation of mcGESSE followed, with reproducibility of MWF measurements being assessed and the potential of an accelerated protocol using parallel imaging being investigated. While further work is needed to assess data quality, this approach shows great potential to obtain whole brain MWF data within a clinically relevant scan time

    On Nature of the Gradient Echo MR Signal and Its Application to Monitoring Multiple Sclerosis

    Get PDF
    Multiple Sclerosis is a common disease, affecting 2.5 million people world-wide. The clinical course is heterogeneous, ranging from benign disease in which patients live an almost normal life to severe and devastating disease that may shorten life. Despite much research, a fully effective treatment for MS is still unavailable and diagnostic techniques for monitoring MS disease evolution are much needed. As a non-invasive tool, Magnetic resonance imaging: MRI) plays a key role in MS diagnosis. Numerous MRI techniques have been proposed over the years. Among most widely used are conventional T1-weighted: T1W), T2-weighted: T2W) and FLuid Attenuated Inversion Recovery: FLAIR) imaging techniques. However their results do not correlate well with neurological findings. Several advanced MRI techniques are also used as research tools to study MS. Among them are magnetization transfer contrast imaging: MT), MR spectroscopy: MRS), and Diffusion Tensor Imaging: DTI) but they have not penetrated to clinical arena yet. Gradient Echo Plural Contrast Imaging: GEPCI) developed in our laboratory is a post processing technique based on multi-echo gradient echo sequence. It offers basic contrasts such as T1W images and T2* maps obtained from magnitude of GEPCI signal, and frequency maps obtained from GEPCI signal phase. Phase information of Gradient Echo MR signal has recently attracted much attention of the MR community since it manifests superior gray matter/ white matter contrast and sub-cortical contrast, especially at high field: 7 T) MRI. However the nature of this contrast is under intense debates. Our group proposed a theoretical framework - Generalized Lorentzian Approach - which emphasizes that, contrary to a common-sense intuition, phase contrast in brain tissue is not directly proportional to the tissue bulk magnetic susceptibility but is rather determined by the geometrical arrangement of brain tissue components: lipids, proteins, iron, etc.) at the cellular and sub-cellular levels - brain tissue magnetic architecture . In this thesis we have provide first direct prove of this hypothesis by measurement of phase contrast in isolated optic nerve. We have also provided first quantitative measurements of the contribution to phase contrast from the water-macromolecule exchange effect. Based on our measurement in protein solutions, we demonstrated that the magnitude of exchange effect is 1/2 of susceptibility effect and to the opposite sign. GEPCI technique also offers a scoring method for monitoring Multiple Sclerosis based on the quantitative T2* maps generated from magnitude information of gradient echo signal. Herein we demonstrated a strong agreement between GEPCI quantitative scores and traditional lesion load assessment. We also established a correlation between GEPCI scores and clinical tests for MS patients. We showed that this correlation is stronger than that found between traditional lesion load and clinical tests. Such studies will be carried out for longer period and on MS subjects with broader range of disease severity in the future. We have also demonstrated that the magnitude and phase information available from GEPCI experiment can be combined in multiple ways to generate novel contrasts that can help with visualization of neurological brain abnormalities beyond Multiple Sclerosis. In summary, in this study, we 1) propose novel contrasts for GEPCI from its basic images; 2) investigate the biophysical mechanisms behind phase contrast; 3) evaluate the benefits of quantitative T2* map offered by GEPCI in monitoring disease of Multiple Sclerosis by comparing GEPCI results to clinical standard techniques; 4) apply our theoretical framework - Generalized Lorentzian Approach - to better understand phase contrast in MS lesions

    hMRI - A toolbox for quantitative MRI in neuroscience and clinical research

    Get PDF
    Neuroscience and clinical researchers are increasingly interested in quantitative magnetic resonance imaging (qMRI) due to its sensitivity to micro-structural properties of brain tissue such as axon, myelin, iron and water concentration. We introduce the hMRI-toolbox, an open-source, easy-to-use tool available on GitHub, for qMRI data handling and processing, presented together with a tutorial and example dataset. This toolbox allows the estimation of high-quality multi-parameter qMRI maps (longitudinal and effective transverse relaxation rates and , proton density and magnetisation transfer saturation) that can be used for quantitative parameter analysis and accurate delineation of subcortical brain structures. The qMRI maps generated by the toolbox are key input parameters for biophysical models designed to estimate tissue microstructure properties such as the MR g-ratio and to derive standard and novel MRI biomarkers. Thus, the current version of the toolbox is a first step towards in vivo histology using MRI (hMRI) and is being extended further in this direction. Embedded in the Statistical Parametric Mapping (SPM) framework, it benefits from the extensive range of established SPM tools for high-accuracy spatial registration and statistical inferences and can be readily combined with existing SPM toolboxes for estimating diffusion MRI parameter maps. From a user's perspective, the hMRI-toolbox is an efficient, robust and simple framework for investigating qMRI data in neuroscience and clinical research

    Anatomic & metabolic brain markers of the m.3243A>G mutation: A multi-parametric 7T MRI study

    Get PDF
    One of the most common mitochondrial DNA (mtDNA) mutations, the A to G transition at base pair 3243, has been linked to changes in the brain, in addition to commonly observed hearing problems, diabetes and myopathy. However, a detailed quantitative description of m.3243A>G patients' brains has not been provided so far. In this study, ultra-high field MRI at 7T and volume- and surface-based data analyses approaches were used to highlight morphology (i.e. atrophy)-, microstructure (i.e. myelin and iron concentration)- and metabolism (i.e. cerebral blood flow)-related differences between patients (N = 22) and healthy controls (N = 15). The use of quantitative MRI at 7T allowed us to detect subtle changes of biophysical processes in the brain with high accuracy and sensitivity, in addition to typically assessed lesions and atrophy. Furthermore, the effect of m.3243A>G mutation load in blood and urine epithelial cells on these MRI measures was assessed within the patient population and revealed that blood levels were most indicative of the brain's state and disease severity, based on MRI as well as on neuropsychological data. Morphometry MRI data showed a wide-spread reduction of cortical, subcortical and cerebellar gray matter volume, in addition to significantly enlarged ventricles. Moreover, surface-based analyses revealed brain area-specific changes in cortical thickness (e.g. of the auditory cortex), and in T1, T2* and cerebral blood flow as a function of mutation load, which can be linked to typically m.3243A>G-related clinical symptoms (e.g. hearing impairment). In addition, several regions linked to attentional control (e.g. middle frontal gyrus), the sensorimotor network (e.g. banks of central sulcus) and the default mode network (e.g. precuneus) were characterized by alterations in cortical thickness, T1, T2* and/or cerebral blood flow, which has not been described in previous MRI studies. Finally, several hypotheses, based either on vascular, metabolic or astroglial implications of the m.3243A>G mutation, are discussed that potentially explain the underlying pathobiology. To conclude, this is the first 7T and also the largest MRI study on this patient population that provides macroscopic brain correlates of the m.3243A>G mutation indicating potential MRI biomarkers of mitochondrial diseases and might guide future (longitudinal) studies to extensively track neuropathological and clinical changes

    Advances in Quantitative MRI: Acquisition, Estimation, and Application

    Full text link
    Quantitative magnetic resonance imaging (QMRI) produces images of potential MR biomarkers: measurable tissue properties related to physiological processes that characterize the onset and progression of specific disorders. Though QMRI has potential to be more diagnostic than conventional qualitative MRI, QMRI poses challenges beyond those of conventional MRI that limit its feasibility for routine clinical use. This thesis first seeks to address two of those challenges. It then applies these solutions to develop a new method for myelin water imaging, a challenging application that may be specifically indicative of certain white matter (WM) disorders. One challenge that presently precludes widespread clinical adoption of QMRI involves long scan durations: to disentangle potential biomarkers from nuisance MR contrast mechanisms, QMRI typically requires more data than conventional MRI and thus longer scans. Even allowing for long scans, it has previously been unclear how to systematically tune the "knobs" of MR acquisitions to reliably enable precise biomarker estimation. Chapter 4 formalizes these challenges as a min-max optimal acquisition design problem and solves this problem to design three fast steady-state (SS) acquisitions for precise T1/T2 estimation, a popular QMRI application. The resulting optimized acquisition designs illustrate that acquisition design can enable new biomarker estimation techniques from established MR pulse sequences, a fact that subsequent chapters exploit. Another QMRI challenge involves the typically nonlinear dependence of MR signal models on the underlying biomarkers: these nonlinearities cause conventional likelihood-based estimators to either scale very poorly with the number of unknowns or risk producing suboptimal estimates due to spurious local minima. Chapter 5 instead introduces a fast, general method for dictionary-free QMRI parameter estimation via regression with kernels (PERK). PERK first uses prior distributions and the nonlinear MR signal model to simulate many parameter-measurement pairs. Inspired by machine learning, PERK then takes these pairs as labeled training points and learns from them a nonlinear regression function using kernel functions and convex optimization. Chapter 5 demonstrates PERK for T1/T2 estimation using one of the acquisitions optimized in Chapter 4. Simulations as well as single-slice phantom and in vivo experiments demonstrated that PERK and two well-suited maximum-likelihood (ML) estimators produce comparable T1/T2 estimates, but PERK is consistently at least 140x faster. Similar comparisons to an ML estimator in a more challenging problem (Chapter 6) suggest that this 140x acceleration factor will increase by several orders of magnitude for full-volume QMRI estimation problems involving more latent parameters per voxel. Chapter 6 applies ideas developed in previous chapters to design a new fast method for imaging myelin water content, a potential biomarker for healthy myelin. It first develops a two-compartment dual-echo steady-state (DESS) signal model and then uses a Bayesian variation of acquisition design (Chapter 4) to optimize a new DESS acquisition for precise myelin water imaging. The precision-optimized acquisition is as fast as conventional SS myelin water imaging acquisitions, but enables 2-3x better expected coefficients of variation in fast-relaxing fraction estimates. Simulations demonstrate that PERK (Chapter 5) and ML fast-relaxing fraction estimates from the proposed DESS acquisition exhibit comparable root mean-squared errors, but PERK is more than 500x faster. In vivo experiments are to our knowledge the first to demonstrate lateral WM myelin water content estimates from a fast (3m15s) SS acquisition that are similar to conventional estimates from a slower (32m4s) MESE acquisition.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147486/1/gnataraj_1.pd
    • …
    corecore