6,272 research outputs found

    Mobile Edge Computing Empowers Internet of Things

    Full text link
    In this paper, we propose a Mobile Edge Internet of Things (MEIoT) architecture by leveraging the fiber-wireless access technology, the cloudlet concept, and the software defined networking framework. The MEIoT architecture brings computing and storage resources close to Internet of Things (IoT) devices in order to speed up IoT data sharing and analytics. Specifically, the IoT devices (belonging to the same user) are associated to a specific proxy Virtual Machine (VM) in the nearby cloudlet. The proxy VM stores and analyzes the IoT data (generated by its IoT devices) in real-time. Moreover, we introduce the semantic and social IoT technology in the context of MEIoT to solve the interoperability and inefficient access control problem in the IoT system. In addition, we propose two dynamic proxy VM migration methods to minimize the end-to-end delay between proxy VMs and their IoT devices and to minimize the total on-grid energy consumption of the cloudlets, respectively. Performance of the proposed methods are validated via extensive simulations

    MobiThin management framework: design and evaluation

    Get PDF
    In thin client computing, applications are executed on centralized servers. User input (e.g. keystrokes) is sent to a remote server which processes the event and sends the audiovisual output back to the client. This enables execution of complex applications from thin devices. Adopting virtualization technologies on the thin client server brings several advantages, e.g. dedicated environments for each user and interesting facilities such as migration tools. In this paper, a mobile thin client service offered to a large number of mobile users is designed. Pervasive mobile thin client computing requires an intelligent service management to guarantee a high user experience. Due to the dynamic environment, the service management framework has to monitor the environment and intervene when necessary (e.g. adapt thin client protocol settings, move a session from one server to another). A detailed performance analysis of the implemented prototype is presented. It is shown that the prototype can handle up to 700 requests/s to start the mobile thin client service. The prototype can make a decision for up to 700 monitor reports per second

    Joint Computation Offloading and Prioritized Scheduling in Mobile Edge Computing

    Get PDF
    With the rapid development of smart phones, enormous amounts of data are generated and usually require intensive and real-time computation. Nevertheless, quality of service (QoS) is hardly to be met due to the tension between resourcelimited (battery, CPU power) devices and computation-intensive applications. Mobileedge computing (MEC) emerging as a promising technique can be used to copy with stringent requirements from mobile applications. By offloading computationally intensive workloads to edge server and applying efficient task scheduling, energy cost of mobiles could be significantly reduced and therefore greatly improve QoS, e.g., latency. This paper proposes a joint computation offloading and prioritized task scheduling scheme in a multi-user mobile-edge computing system. We investigate an energy minimizing task offloading strategy in mobile devices and develop an effective priority-based task scheduling algorithm with edge server. The execution time, energy consumption, execution cost, and bonus score against both the task data sizes and latency requirement is adopted as the performance metric. Performance evaluation results show that, the proposed algorithm significantly reduce task completion time, edge server VM usage cost, and improve QoS in terms of bonus score. Moreover, dynamic prioritized task scheduling is also discussed herein, results show dynamic thresholds setting realizes the optimal task scheduling. We believe that this work is significant to the emerging mobile-edge computing paradigm, and can be applied to other Internet of Things (IoT)-Edge applications
    • …
    corecore