16 research outputs found

    Spectrum Efficient Cognitive Radio Sensor Network for IoT with Low Energy Consumption

    Get PDF
    Cognitive Radio Sensor Networks (CRSNs) have emerged as a promising solution for efficient utilization of the limited frequency spectrum. One of the key challenges in CRSNs is achieving spectrum efficiency by avoiding interference and maximizing the use of the available spectrum. Particle Swarm Optimization (PSO) techniques have been widely used to optimize the spectrum allocation and improve the spectrum efficiency of CRSNs. In this paper the study provides an overview of the research on spectrum efficiency in CRSNs using PSO techniques and also discussed the key parameters that affect the spectrum efficiency, such as the swarm size, sensor's threshold and maximum number of iterations and highlights the importance of identifying the optimal combination of these parameters. This paper also emphasizes the need for further research and development in this area to improve the efficiency and effectiveness of PSO-based optimization techniques for CRSNs and to adapt them to various real-world scenarios. Achieving spectrum efficiency in CRSNs is critical for enabling effective wireless communication systems and improving the overall utilization of the available frequency spectrum

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Application of cognitive radio based sensor network in smart grids for efficient, holistic monitoring and control.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.This thesis is directed towards the application of cognitive radio based sensor network (CRSN) in smart grid (SG) for efficient, holistic monitoring and control. The work involves enabling of sensor network and wireless communication devices for spectra utilization via the capability of Dynamic Spectrum Access (DSA) of a cognitive radio (CR) as well as end to end communication access technology for unified monitoring and control in smart grids. Smart Grid (SG) is a new power grid paradigm that can provide predictive information and recommendations to utilities, including their suppliers, and their customers on how best to manage power delivery and consumption. SG can greatly reduce air pollution from our surrounding by renewable power sources such as wind energy, solar plants and huge hydro stations. SG also reduces electricity blackouts and surges. Communication network is the foundation for modern SG. Implementing an improved communication solution will help in addressing the problems of the existing SG. Hence, this study proposed and implemented improved CRSN model which will help to ultimately evade the inherent problems of communication network in the SG such as: energy inefficiency, interference, spectrum inefficiencies, poor quality of service (QoS), latency and throughput. To overcome these problems, the existing approach which is more predominant is the use of wireless sensor network (WSNs) for communication needs in SG. However, WSNs have low battery power, low computational complexity, low bandwidth support, and high latency or delay due to multihop transmission in existing WSN topology. Consequently, solving these problems by addressing energy efficiency, bandwidth or throughput, and latency have not been fully realized due to the limitations in the WSN and the existing network topology. Therefore, existing approach has not fully addressed the communication needs in SG. SG can be fully realized by integrating communication network technologies infrastructures into the power grid. Cognitive Radio-based Sensor Network (CRSN) is considered a feasible solution to enhance various aspects of the electric power grid such as communication with end and remote devices in real-time manner for efficient monitoring and to realize maximum benefits of a smart grid system. CRSN in SG is aimed at addressing the problem of spectrum inefficiency and interference which wireless sensor network (WSN) could not. However, numerous challenges for CRSNs are due to the harsh environmental wireless condition in a smart grid system. As a result, latency, throughput and reliability become critical issues. To overcome these challenges, lots of approaches can be adopted ranging from integration of CRSNs into SGs; proper implementation design model for SG; reliable communication access devices for SG; key immunity requirements for communication infrastructure in SG; up to communication network protocol optimization and so on. To this end, this study utilized the National Institute of Standard (NIST) framework for SG interoperability in the design of unified communication network architecture including implementation model for guaranteed quality of service (QoS) of smart grid applications. This involves virtualized network in form of multi-homing comprising low power wide area network (LPWAN) devices such as LTE CAT1/LTE-M, and TV white space band device (TVBD). Simulation and analysis show that the performance of the developed modules architecture outperforms the legacy wireless systems in terms of latency, blocking probability, and throughput in SG harsh environmental condition. In addition, the problem of multi correlation fading channels due to multi antenna channels of the sensor nodes in CRSN based SG has been addressed by the performance analysis of a moment generating function (MGF) based M-QAM error probability over Nakagami-q dual correlated fading channels with maximum ratio combiner (MRC) receiver technique which includes derivation and novel algorithmic approach. The results of the MATLAB simulation are provided as a guide for sensor node deployment in order to avoid the problem of multi correlation in CRSN based SGs. SGs application requires reliable and efficient communication with low latency in timely manner as well as adequate topology of sensor nodes deployment for guaranteed QoS. Another important requirement is the need for an optimized protocol/algorithms for energy efficiency and cross layer spectrum aware made possible for opportunistic spectrum access in the CRSN nodes. Consequently, an optimized cross layer interaction of the physical and MAC layer protocols using various novel algorithms and techniques was developed. This includes a novel energy efficient distributed heterogeneous clustered spectrum aware (EDHC- SA) multichannel sensing signal model with novel algorithm called Equilateral triangulation algorithm for guaranteed network connectivity in CRSN based SG. The simulation results further obtained confirm that EDHC-SA CRSN model outperforms conventional ZigBee WSN in terms of bit error rate (BER), end-to-end delay (latency) and energy consumption. This no doubt validates the suitability of the developed model in SG

    COGNITIVE RADIO SENSOR NETWORKS: A MULTI-LAYER PERSPECTIVE

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Markov decision processes with applications in wireless sensor networks: A survey

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier

    An adaptive threshold energy detection technique with noise variance estimation for cognitive radio sensor networks

    Get PDF
    The paradigm of wireless sensor networks (WSNs) has gained a lot of popularity in the recent years due to the proliferation of wireless devices. This is evident as WSNs find numerous application areas in fields such as agriculture, infrastructure monitoring, transport, and security surveillance. Traditionally, most deployments of WSNs operate in the unlicensed industrial scientific and medical (ISM) band and more specifically, the globally available 2.4 GHz frequency band. This band is shared with several other wireless technologies such as Bluetooth, Wi-Fi, near field communication and other proprietary technologies thus leading to overcrowding and interference problems. The concept of dynamic spectrum access alongside cognitive radio technology can mitigate the coexistence issues by allowing WSNs to dynamically access new spectrum opportunities. Furthermore, cognitive radio technology addresses some of the inherent constraints of WSNs thus introducing a myriad of benefits. This justifies the emergence of cognitive radio sensor networks (CRSNs). The selection of a spectrum sensing technique plays a vital role in the design and implementation of a CRSN. This dissertation sifts through the spectrum sensing techniques proposed in literature investigating their suitability for CRSN applications. We make amendments to the conventional energy detector particularly on the threshold selection technique. We propose an adaptive threshold energy detection model with noise variance estimation for implementation in CRSN systems. Experimental work on our adaptive threshold technique based on the recursive one-sided hypothesis test (ROHT) technique was carried out using MatLab. The results obtained indicate that our proposed technique is able to achieve adaptability of the threshold value based on the noise variance. We also employ the constant false alarm rate (CFAR) threshold to act as a defence mechanism against interference of the primary user at low signal to noise ratio (SNR). Our evaluations indicate that our adaptive threshold technique achieves double dynamicity of the threshold value based on the noise variance and the perceived SNR
    corecore