32 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Markov decision processes with applications in wireless sensor networks: A survey

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier

    Multi-Agent Reinforcement Learning for Network Selection and Resource Allocation in Heterogeneous Multi-RAT Networks

    Get PDF
    The rapid production of mobile devices along with the wireless applications boom is continuing to evolve daily. This motivates the exploitation of wireless spectrum using multiple Radio Access Technologies (multi-RAT) and developing innovative network selection techniques to cope with such intensive demand while improving Quality of Service (QoS). Thus, we propose a distributed framework for dynamic network selection at the edge level, and resource allocation at the Radio Access Network (RAN) level, while taking into consideration diverse applications' characteristics. In particular, our framework employs a deep Multi-Agent Reinforcement Learning (DMARL) algorithm, that aims to maximize the edge nodes' quality of experience while extending the battery lifetime of the nodes and leveraging adaptive compression schemes. Indeed, our framework enables data transfer from the network's edge nodes, with multi-RAT capabilities, to the cloud in a cost and energy-efficient manner, while maintaining QoS requirements of different supported applications. Our results depict that our solution outperforms state-of-the-art techniques of network selection in terms of energy consumption, latency, and cost

    Deep Learning in Mobile and Wireless Networking: A Survey

    Get PDF
    The rapid uptake of mobile devices and the rising popularity of mobile applications and services pose unprecedented demands on mobile and wireless networking infrastructure. Upcoming 5G systems are evolving to support exploding mobile traffic volumes, agile management of network resource to maximize user experience, and extraction of fine-grained real-time analytics. Fulfilling these tasks is challenging, as mobile environments are increasingly complex, heterogeneous, and evolving. One potential solution is to resort to advanced machine learning techniques to help managing the rise in data volumes and algorithm-driven applications. The recent success of deep learning underpins new and powerful tools that tackle problems in this space. In this paper we bridge the gap between deep learning and mobile and wireless networking research, by presenting a comprehensive survey of the crossovers between the two areas. We first briefly introduce essential background and state-of-the-art in deep learning techniques with potential applications to networking. We then discuss several techniques and platforms that facilitate the efficient deployment of deep learning onto mobile systems. Subsequently, we provide an encyclopedic review of mobile and wireless networking research based on deep learning, which we categorize by different domains. Drawing from our experience, we discuss how to tailor deep learning to mobile environments. We complete this survey by pinpointing current challenges and open future directions for research

    Deep Learning Techniques for Mobility Prediction and Management in Mobile Networks

    Get PDF
    Trajectory prediction is an important research topic in modern mobile networks (e.g., 5G and beyond 5G) to enhance the network quality of service by accurately predicting the future locations of mobile users, such as pedestrians and vehicles, based on their past mobility patterns. A trajectory is defined as the sequence of locations the user visits over time. The primary objective of this thesis is to improve the modeling of mobility data and establish personalized, scalable, collective-intelligent, distributed, and strategic trajectory prediction techniques that can effectively adapt to the dynamics of urban environments in order to facilitate the optimal delivery of mobility-aware network services. Our proposed approaches aim to increase the accuracy of trajectory prediction while minimizing communication and computational costs leading to more efficient mobile networks. The thesis begins by introducing a personalized trajectory prediction technique using deep learning and reinforcement learning. It adapts the neural network architecture to capture the distinct characteristics of mobile users’ data. Furthermore, it introduces advanced anticipatory handover management and dynamic service migration techniques that optimize network management using our high-performance trajectory predictor. This approach ensures seamless connectivity and proactively migrates network services, enhancing the quality of service in dense wireless networks. The second contribution of the thesis introduces cluster-level prediction to extend the reinforcement learning-based trajectory prediction, addressing scalability challenges in large-scale networks. Cluster-level trajectory prediction leverages users’ similarities within clusters to train only a few representatives. This enables efficient transfer learning of pre-trained mobility models and reduces computational overhead enhancing the network scalability. The third contribution proposes a collaborative social-aware multi-agent trajectory prediction technique that accounts for the interactions between multiple intra-cluster agents in a dynamic urban environment, increasing the prediction accuracy but decreasing the algorithm complexity and computational resource usage. The fourth contribution proposes a federated learning-driven multi-agent trajectory prediction technique that leverages the collaborative power of multiple local data sources in a decentralized manner to enhance user privacy and improve the accuracy of trajectory prediction while jointly minimizing computational and communication costs. The fifth contribution proposes a game theoretic non-cooperative multi-agent prediction technique that considers the strategic behaviors among competitive inter-cluster mobile users. The proposed approaches are evaluated on small-scale and large-scale location-based mobility datasets, where locations could be GPS coordinates or cellular base station IDs. Our experiments demonstrate that our proposed approaches outperform state-of-the-art trajectory prediction methods making significant contributions to the field of mobile networks

    Optimization of Mobility Parameters using Fuzzy Logic and Reinforcement Learning in Self-Organizing Networks

    Get PDF
    In this thesis, several optimization techniques for next-generation wireless networks are proposed to solve different problems in the field of Self-Organizing Networks and heterogeneous networks. The common basis of these problems is that network parameters are automatically tuned to deal with the specific problem. As the set of network parameters is extremely large, this work mainly focuses on parameters involved in mobility management. In addition, the proposed self-tuning schemes are based on Fuzzy Logic Controllers (FLC), whose potential lies in the capability to express the knowledge in a similar way to the human perception and reasoning. In addition, in those cases in which a mathematical approach has been required to optimize the behavior of the FLC, the selected solution has been Reinforcement Learning, since this methodology is especially appropriate for learning from interaction, which becomes essential in complex systems such as wireless networks. Taking this into account, firstly, a new Mobility Load Balancing (MLB) scheme is proposed to solve persistent congestion problems in next-generation wireless networks, in particular, due to an uneven spatial traffic distribution, which typically leads to an inefficient usage of resources. A key feature of the proposed algorithm is that not only the parameters are optimized, but also the parameter tuning strategy. Secondly, a novel MLB algorithm for enterprise femtocells scenarios is proposed. Such scenarios are characterized by the lack of a thorough deployment of these low-cost nodes, meaning that a more efficient use of radio resources can be achieved by applying effective MLB schemes. As in the previous problem, the optimization of the self-tuning process is also studied in this case. Thirdly, a new self-tuning algorithm for Mobility Robustness Optimization (MRO) is proposed. This study includes the impact of context factors such as the system load and user speed, as well as a proposal for coordination between the designed MLB and MRO functions. Fourthly, a novel self-tuning algorithm for Traffic Steering (TS) in heterogeneous networks is proposed. The main features of the proposed algorithm are the flexibility to support different operator policies and the adaptation capability to network variations. Finally, with the aim of validating the proposed techniques, a dynamic system-level simulator for Long-Term Evolution (LTE) networks has been designed
    corecore