748 research outputs found

    Dynamic Virtual Join Point Dispatch

    Get PDF
    Conceptually, join points are points in the execution of a program and advice is late-bound to them. We propose the notion of virtual join points that makes this concept explicit not only at a conceptual, but also at implementation level. In current implementations of aspect-oriented languages, binding is performed early, at deploy-time, and only a limited residual dispatch is executed. Current implementations fall in the categories of modifying the application code, modifying the meta-level of an application, or interacting with the application by means of events—the latter two already realizing virtual join points to some degree. We provide an implementation of an aspect-oriented execution environment that supports truly virtual join points and discuss how this approach also favors optimizations in the execution environment

    Virtual Machine Support for Many-Core Architectures: Decoupling Abstract from Concrete Concurrency Models

    Get PDF
    The upcoming many-core architectures require software developers to exploit concurrency to utilize available computational power. Today's high-level language virtual machines (VMs), which are a cornerstone of software development, do not provide sufficient abstraction for concurrency concepts. We analyze concrete and abstract concurrency models and identify the challenges they impose for VMs. To provide sufficient concurrency support in VMs, we propose to integrate concurrency operations into VM instruction sets. Since there will always be VMs optimized for special purposes, our goal is to develop a methodology to design instruction sets with concurrency support. Therefore, we also propose a list of trade-offs that have to be investigated to advise the design of such instruction sets. As a first experiment, we implemented one instruction set extension for shared memory and one for non-shared memory concurrency. From our experimental results, we derived a list of requirements for a full-grown experimental environment for further research

    Dynamically typed languages

    Get PDF
    Dynamically typed languages such as Python and Ruby have experienced a rapid grown in popularity in recent times. However, there is much confusion as to what makes these languages interesting relative to statically typed languages, and little knowledge of their rich history. In this chapter I explore the general topic of dynamically typed languages, how they differ from statically typed languages, their history, and their defining features

    Software Education for Changing Computing Technology

    Get PDF
    Software education has been dominated by procedural-based programming languages such as BASIC, FORTRAN and C, and before that, the assembly languages. The primary reason that this methodology has held such sway in education was that it allowed quick action for the first major users of computers. This approach was the most straight-forward means of utilizing hardware that, over the last 60 years, has gotten faster and more complex through smaller and more densely packed elements. However, traditional advances as described by Moore’s law are now reaching both physical and economic limits. Pure object-oriented programming approaches offer benefits for hardware that is highly parallel and that is of non-traditional design. This work describes the evolution of computational technology, explores features of pure object-oriented languages such as Squeak Smalltalk, and discusses proactive curricula options

    Bridging the Gap between Machine and Language using First-Class Building Blocks

    Get PDF
    High-performance virtual machines (VMs) are increasingly reused for programming languages for which they were not initially designed. Unfortunately, VMs are usually tailored to specific languages, offer only a very limited interface to running applications, and are closed to extensions. As a consequence, extensions required to support new languages often entail the construction of custom VMs, thus impacting reuse, compatibility and performance. Short of building a custom VM, the language designer has to choose between the expressiveness and the performance of the language. In this dissertation we argue that the best way to open the VM is to eliminate it. We present Pinocchio, a natively compiled Smalltalk, in which we identify and reify three basic building blocks for object-oriented languages. First we define a protocol for message passing similar to calling conventions, independent of the actual message lookup mechanism. The lookup is provided by a self-supporting runtime library written in Smalltalk and compiled to native code. Since it unifies the meta- and base-level we obtain a metaobject protocol (MOP). Then we decouple the language-level manipulation of state from the machine-level implementation by extending the structural reflective model of the language with object layouts, layout scopes and slots. Finally we reify behavior using AST nodes and first-class interpreters separate from the low-level language implementation. We describe the implementations of all three first-class building blocks. For each of the blocks we provide a series of examples illustrating how they enable typical extensions to the runtime, and we provide benchmarks validating the practicality of the approaches

    A bytecode set for adaptive optimizations

    Get PDF
    International audienceThe Cog virtual machine features a bytecode interpreter and a baseline Just-in-time compiler. To reach the performance level of industrial quality virtual machines such as Java HotSpot, it needs to employ an adaptive inlining com-piler, a tool that on the fly aggressively optimizes frequently executed portions of code. We decided to implement such a tool as a bytecode to bytecode optimizer, implemented above the virtual machine, where it can be written and developed in Smalltalk. The optimizer we plan needs to extend the operations encoded in the bytecode set and its quality heavily depends on the bytecode set quality. The current bytecode set understood by the virtual machine is old and lacks any room to add new operations. We decided to implement a new bytecode set, which includes additional bytecodes that allow the Just-in-time compiler to generate less generic, and hence simpler and faster code sequences for frequently executed primitives. The new bytecode set includes traps for validating speculative inlining de-cisions and is extensible without compromising optimization opportunities. In addition, we took advantage of this work to solve limitations of the current bytecode set such as the maximum number of instance variable per class, or number of literals per method. In this paper we describe this new byte-code set. We plan to have it in production in the Cog virtual machine and its Pharo, Squeak and Newspeak clients in the coming year

    A general framework for positioning, evaluating and selecting the new generation of development tools.

    Get PDF
    This paper focuses on the evaluation and positioning of a new generation of development tools containing subtools (report generators, browsers, debuggers, GUI-builders, ...) and programming languages that are designed to work together and have a common graphical user interface and are therefore called environments. Several trends in IT have led to a pluriform range of developments tools that can be classified in numerous categories. Examples are: object-oriented tools, GUI-tools, upper- and lower CASE-tools, client/server tools and 4GL environments. This classification does not sufficiently cover the tools subject in this paper for the simple reason that only one criterion is used to distinguish them. Modern visual development environments often fit in several categories because to a certain extent, several criteria can be applied to evaluate them. In this study, we will offer a broad classification scheme with which tools can be positioned and which can be refined through further research.
    corecore