522 research outputs found

    On The Maintenance Modeling and Optimization of Repairable Systems: Two Different Scenarios

    Get PDF
    The use of mathematical modeling for the purpose of analyzing and optimizing the performance of repairable systems is widely studied in the literature. In this dissertation, we study two different scenarios on the maintenance modeling and optimization of repairable systems. First, we study the long-run availability of a traditional repairable system that is subjected to imperfect corrective maintenance. We use Kijima\u27s second virtual age model to describe the imperfect repair process. Because of the complexity of the underlying probability models, we use simulation modeling to estimate availability performance and meta-modeling to convert the reliability and maintainability parameters of the repairable system into an availability estimate without the simulation effort. As a last step, we add age-based, perfect preventive maintenance to our analysis. Second, we optimize a preventive maintenance policy for a two-component repairable system. When either component fails, instantaneous, minimal, and costly corrective maintenance is performed on the component. At equally-spaced, discrete points during the system\u27s useful life, the decision-maker has the option to perform instantaneous, imperfect, and costly preventive maintenance on one or both of the components, to instantaneously replace one or both of the components, or to do nothing. We use a Genetic Algorithm in an attempt to find a cost-optimal set of preventive maintenance and replacement decisions

    Optimal maintenance of multi-component systems: a review

    Get PDF
    In this article we give an overview of the literature on multi-component maintenance optimization. We focus on work appearing since the 1991 survey "A survey of maintenance models for multi-unit systems" by Cho and Parlar. This paper builds forth on the review article by Dekker et al. (1996), which focusses on economic dependence, and the survey of maintenance policies by Wang (2002), in which some group maintenance and some opportunistic maintenance policies are considered. Our classification scheme is primarily based on the dependence between components (stochastic, structural or economic). Next, we also classify the papers on the basis of the planning aspect (short-term vs long-term), the grouping of maintenance activities (either grouping preventive or corrective maintenance, or opportunistic grouping) and the optimization approach used (heuristic, policy classes or exact algorithms). Finally, we pay attention to the applications of the models.literature review;economic dependence;failure interaction;maintenance policies;grouping maintenance;multi-component systems;opportunistic maintenance;maintencance optimization;structural dependence

    Integrating Closed-loop Supply Chains and Spare Parts Management at IBM

    Get PDF
    Ever more companies are recognizing the benefits of closed-loop supplychains that integrate product returns into business operations. IBMhas been among the pioneers seeking to unlock the value dormant inthese resources. We report on a project exploiting product returns asa source of spare parts. Key decisions include the choice of recoveryopportunities to use, the channel design, and the coordination ofalternative supply sources. We developed an analytic inventory controlmodel and a simulation model to address these issues. Our results showthat procurement cost savings largely outweigh reverse logistics costsand that information management is key to an efficient solution. Ourrecommendations provide a basis for significantly expanding the usageof the novel parts supply source, which allows for cutting procurementcosts.supply chain management;reverse logistics;product recovery;inventory management;service management

    Prognostics-Based Two-Operator Competition for Maintenance and Service Part Logistics

    Get PDF
    Prognostics and timely maintenance of components are critical to the continuing operation of a system. By implementing prognostics, it is possible for the operator to maintain the system in the right place at the right time. However, the complexity in the real world makes near-zero downtime difficult to achieve partly because of a possible shortage of required service parts. This is realistic and quite important in maintenance practice. To coordinate with a prognostics-based maintenance schedule, the operator must decide when to order service parts and how to compete with other operators who also need the same parts. This research addresses a joint decision-making approach that assists two operators in making proactive maintenance decisions and strategically competing for a service part that both operators rely on for their individual operations. To this end, a maintenance policy involving competition in service part procurement is developed based on the Stackelberg game-theoretic model. Variations of the policy are formulated for three different scenarios and solved via either backward induction or genetic algorithm methods. Unlike the first two scenarios, the possibility for either of the operators being the leader in such competitions is considered in the third scenario. A numerical study on wind turbine operation is provided to demonstrate the use of the joint decision-making approach in maintenance and service part logistics

    Multi-State System Reliability: A New and Systematic Review

    Get PDF
    AbstractReliability analysis considering multiple possible states is known as multi-state (MS) reliability analysis. Multi-state system reliability models allow both the system and its components to assume more than two levels of performance. Through multi-state reliability models provide more realistic and more precise representations of engineering systems, they are much more complex and present major difficulties in system definition and performance evaluation. MSS reliability has received a substantial amount of attention in the past four decades. This article presents a new and systematic review about multi-state system reliability. A timely review is an effective work related to improving the development of MSS theory. The review about the latest studies and advances about multi-state system reliability evaluation, multi-state systems optimization and multi-state systems maintenance is summarized in this paper

    Reliability Analysis And Optimal Maintenance Planning For Repairable Multi-Component Systems Subject To Dependent Competing Risks

    Get PDF
    Modern engineering systems generally consist of multiple components that interact in a complex manner. Reliability analysis of multi-component repairable systems plays a critical role for system safety and cost reduction. Establishing reliability models and scheduling optimal maintenance plans for multi-component repairable systems, however, is still a big challenge when considering the dependency of component failures. Existing models commonly make prior assumptions, without statistical verification, as to whether different component failures are independent or not. In this dissertation, data-driven systematic methodologies to characterize component failure dependency of complex systems are proposed. In CHAPTER 2, a parametric reliability model is proposed to capture the statistical dependency among different component failures under partially perfect repair assumption. Based on the proposed model, statistical hypothesis tests are developed to test the dependency of component failures. In CHAPTER 3, two reliability models for multi-component systems with dependent competing risks under imperfect assumptions are proposed, i.e., generalized dependent latent age model and copula-based trend-renewal process model. The generalized dependent latent age model generalizes the partially perfect repair model by involving the extended virtual age concept. And the copula-based trend renewal process model utilizes multiple trend functions to transform the failure times from original time domain to a transformed time domain, in which the repair conditions can be treated as partially perfect. Parameter estimation methods for both models are developed. In CHAPTER 4, based on the generalized dependent latent age model, two periodic inspection-based maintenance polices are developed for a multi-component repairable system subject to dependent competing risks. The first maintenance policy assumes all the components are restored to as good as new once a failure detected, i.e., the whole system is replaced. The second maintenance policy considers the partially perfect repair, i.e., only the failed component can be replaced after detection of failures. Both the maintenance policies are optimized with the aim to minimize the expected average maintenance cost per unit time. The developed methodologies are demonstrated by using applications of real engineering systems

    Modeling Information Reliability and Maintenance: A Systematic Literature Review

    Get PDF
    Operating a business efficiently depends on effective everyday decision-making. In turn, those decisions are influenced by the quality of data used in the decision-making process, and maintaining good data quality becomes more challenging as a business expands. Protecting the quality of the data and the information it generates is a challenge faced by many companies across all industrial sectors. As companies begin to use data from these large data bases they will need to begin to develop strategies for maintaining and assessing the reliability of the information they generate using this data. A considerable amount of literature exists on data quality but minimal amounts of information exist on information reliability and maintenance. For these reasons, it is important to study the current methods used by businesses to maintain desired levels of data and information quality. The purpose of this paper is to describe and assess the available knowledge relating data quality, reliability and maintenance by performing a systematic literature review in these areas
    • …
    corecore