3 research outputs found

    Value-of-Information based Data Collection in Underwater Sensor Networks

    Get PDF
    Underwater sensor networks are deployed in marine environments, presenting specific challenges compared to sensor networks deployed in terrestrial settings. Among the major issues that underwater sensor networks face is communication medium limitations that result in low bandwidth and long latency. This creates problems when these networks need to transmit large amounts of data over long distances. A possible solution to address this issue is to use mobile sinks such as autonomous underwater vehicles (AUVs) to offload these large quantities of data. Such mobile sinks are called data mules. Often it is the case that a sensor network is deployed to report events that require immediate attention. Delays in reporting such events can have catastrophic consequences. In this dissertation, we present path planning algorithms that help in prioritizing data retrieval from sensor nodes in such a manner that nodes that require more immediate attention would be dealt with at the earliest. In other words, the goal is to improve the Quality of Information (QoI) retrieved. The path planning algorithms proposed in this dissertation are based on heuristics meant to improve the Value of Information (VoI) retrieved from a system. Value of information is a construct that helps in encoding the valuation of an information segment i.e. it is the price an optimal player would pay to obtain a segment of information in a game theoretic setting. Quality of information and value of information are complementary concepts. In this thesis, we formulate a value of information model for sensor networks and then consider the constraints that arise in underwater settings. On the basis of this, we develop a VoI-based path planning problem statement and propose heuristics that solve the path planning problem. We show through simulation studies that the proposed strategies improve the value, and hence, quality of the information retrieved. It is important to note that these path planning strategies can be applied equally well in terrestrial settings that deploy mobile sinks for data collection

    Decision-making for Vehicle Path Planning

    Get PDF
    This dissertation presents novel algorithms for vehicle path planning in scenarios where the environment changes. In these dynamic scenarios the path of the vehicle needs to adapt to changes in the real world. In these scenarios, higher performance paths can be achieved if we are able to predict the future state of the world, by learning the way it evolves from historical data. We are relying on recent advances in the field of deep learning and reinforcement learning to learn appropriate world models and path planning behaviors. There are many different practical applications that map to this model. In this dissertation we propose algorithms for two applications that are very different in domain but share important formal similarities: the scheduling of taxi services in a large city and tracking wild animals with an unmanned aerial vehicle. The first application models a centralized taxi dispatch center in a big city. It is a multivariate optimization problem for taxi time scheduling and path planning. The first goal here is to balance the taxi service demand and supply ratio in the city. The second goal is to minimize passenger waiting time and taxi idle driving distance. We design different learning models that capture taxi demand and destination distribution patterns from historical taxi data. The predictions are evaluated with real-world taxi trip records. The predicted taxi demand and destination is used to build a taxi dispatch model. The taxi assignment and re-balance is optimized by solving a Mixed Integer Programming (MIP) problem. The second application concerns animal monitoring using an unmanned aerial vehicle (UAV) to search and track wild animals in a large geographic area. We propose two different path planing approaches for the UAV. The first one is based on the UAV controller solving Markov decision process (MDP). The second algorithms relies on the past recorded animal appearances. We designed a learning model that captures animal appearance patterns and predicts the distribution of future animal appearances. We compare the proposed path planning approaches with traditional methods and evaluated them in terms of collected value of information (VoI), message delay and percentage of events collected

    Optimizing Resurfacing Schedules To Maximize Value Of Information In Uwsns

    No full text
    In Underwater Sensor Networks (UWSNs) with high volume of data recording activity, a mobile sink such as a Autonomous Underwater Vehicle (AUV) can be used to offload data from the sensor nodes. When the AUV approaches the underwater node, it can use high data rate optical communication. However, the data is not considered delivered when it was transferred from the sensor node to the AUV, but when the AUV had resurfaced and transferred the data to the sink. If the data is not time sensitive, it is sufficient for the AUV to resurface only once at the end of its data collection path. However, for time-sensitive data, it is more advantageous for the AUV to resurface multiple times during its path, and upload the data collected since the previous resurfacing. Thus, a resurfacing schedule needs to complement the path planning process. In this paper we are using the metric of Value of Information (VoI) as the optimization criteria to capture the time- sensitive nature of collected information. We propose a genetic algorithm based approach to determine the resurfacing schedule for an AUV which is already provided with the sequence of nodes to be visited
    corecore