558 research outputs found

    05021 Abstracts Collection -- Mathematics, Algorithms, Proofs

    Get PDF
    From 09.01.05 to 14.01.05, the Dagstuhl Seminar 05021 ``Mathematics, Algorithms, Proofs\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. LinkstFo extended abstracts or full papers are provided, if available

    Optimizing a Certified Proof Checker for a Large-Scale Computer-Generated Proof

    Full text link
    In recent work, we formalized the theory of optimal-size sorting networks with the goal of extracting a verified checker for the large-scale computer-generated proof that 25 comparisons are optimal when sorting 9 inputs, which required more than a decade of CPU time and produced 27 GB of proof witnesses. The checker uses an untrusted oracle based on these witnesses and is able to verify the smaller case of 8 inputs within a couple of days, but it did not scale to the full proof for 9 inputs. In this paper, we describe several non-trivial optimizations of the algorithm in the checker, obtained by appropriately changing the formalization and capitalizing on the symbiosis with an adequate implementation of the oracle. We provide experimental evidence of orders of magnitude improvements to both runtime and memory footprint for 8 inputs, and actually manage to check the full proof for 9 inputs.Comment: IMADA-preprint-c

    Certified Universal Gathering in R2R^2 for Oblivious Mobile Robots

    Full text link
    We present a unified formal framework for expressing mobile robots models, protocols, and proofs, and devise a protocol design/proof methodology dedicated to mobile robots that takes advantage of this formal framework. As a case study, we present the first formally certified protocol for oblivious mobile robots evolving in a two-dimensional Euclidean space. In more details, we provide a new algorithm for the problem of universal gathering mobile oblivious robots (that is, starting from any initial configuration that is not bivalent, using any number of robots, the robots reach in a finite number of steps the same position, not known beforehand) without relying on a common orientation nor chirality. We give very strong guaranties on the correctness of our algorithm by proving formally that it is correct, using the COQ proof assistant. This result demonstrates both the effectiveness of the approach to obtain new algorithms that use as few assumptions as necessary, and its manageability since the amount of developed code remains human readable.Comment: arXiv admin note: substantial text overlap with arXiv:1506.0160

    Lifts of convex sets and cone factorizations

    Get PDF
    In this paper we address the basic geometric question of when a given convex set is the image under a linear map of an affine slice of a given closed convex cone. Such a representation or 'lift' of the convex set is especially useful if the cone admits an efficient algorithm for linear optimization over its affine slices. We show that the existence of a lift of a convex set to a cone is equivalent to the existence of a factorization of an operator associated to the set and its polar via elements in the cone and its dual. This generalizes a theorem of Yannakakis that established a connection between polyhedral lifts of a polytope and nonnegative factorizations of its slack matrix. Symmetric lifts of convex sets can also be characterized similarly. When the cones live in a family, our results lead to the definition of the rank of a convex set with respect to this family. We present results about this rank in the context of cones of positive semidefinite matrices. Our methods provide new tools for understanding cone lifts of convex sets.Comment: 20 pages, 2 figure
    • …
    corecore