1,032 research outputs found

    Optimizing Photon Mapping Using Multiple Photon Maps for Irradiance Estimates

    Get PDF
    The photon mapping method is used extensively in global illumination to render photorealistic pictures. We describe a simple optimization technique for calculating the indirect illumination by modifying the photon mapping method. Using our method the photon maps are divided into several photon maps based on the topology of the polygons in the scene. This modification of the photon mapping method has several advantages compared to the traditional method. We demonstrate that the indirect illumination can be calculated faster using our method

    Real-time Global Illumination by Simulating Photon Mapping

    Get PDF

    Energy-Efficient Photon Mapping

    Get PDF
    Mobile devices such as cell phones, personal digital assistants (PDAs), and laptops continue to increase in memory and processor speed at a rapid pace. In recent years it has become common for users to check their email, browse the internet, or play music and movies while traveling. The performance gains are also making mobile graphics renderers more viable applications. However, the underlying battery technology that powers mobile devices has only tripled in capacity in the past 15 years whereas processor speeds have seen a 100-fold increase in the same period. Photon mapping, an extension of ray-tracing, is a robust global illumination algorithm used to produce photorealistic images. Photon mapping, like ray-tracing, can render high-quality specular highlights, transparent and reflective materials, and soft shadows. Complex effects such as caustics, participating media, and subsurface scattering can be rendered more efficiently using photon mapping. This work profiles the energy use of a photon-mapping based renderer to first establish what aspects require the most energy. Second, the effect several photon mapping settings have on image quality is measured. Reasonable tradeoffs between energy savings and moderately diminished image quality can then be recommended, making photon mapping more viable on mobile devices. Our results show that image quality is affected the least as settings corresponding to final gather computations are adjusted. This implies that a user can trade a modest decrease in image quality for significant gains in energy efficiency. Suggestions are made for using energy more efficiently when rendering caustics. Results also show that, although overall energy use is higher with larger image resolutions, per-pixel energy costs are cheaper

    Ray Tracing Gems

    Get PDF
    This book is a must-have for anyone serious about rendering in real time. With the announcement of new ray tracing APIs and hardware to support them, developers can easily create real-time applications with ray tracing as a core component. As ray tracing on the GPU becomes faster, it will play a more central role in real-time rendering. Ray Tracing Gems provides key building blocks for developers of games, architectural applications, visualizations, and more. Experts in rendering share their knowledge by explaining everything from nitty-gritty techniques that will improve any ray tracer to mastery of the new capabilities of current and future hardware. What you'll learn: The latest ray tracing techniques for developing real-time applications in multiple domains Guidance, advice, and best practices for rendering applications with Microsoft DirectX Raytracing (DXR) How to implement high-performance graphics for interactive visualizations, games, simulations, and more Who this book is for: Developers who are looking to leverage the latest APIs and GPU technology for real-time rendering and ray tracing Students looking to learn about best practices in these areas Enthusiasts who want to understand and experiment with their new GPU

    MantissaCam: Learning Snapshot High-dynamic-range Imaging with Perceptually-based In-pixel Irradiance Encoding

    Full text link
    The ability to image high-dynamic-range (HDR) scenes is crucial in many computer vision applications. The dynamic range of conventional sensors, however, is fundamentally limited by their well capacity, resulting in saturation of bright scene parts. To overcome this limitation, emerging sensors offer in-pixel processing capabilities to encode the incident irradiance. Among the most promising encoding schemes is modulo wrapping, which results in a computational photography problem where the HDR scene is computed by an irradiance unwrapping algorithm from the wrapped low-dynamic-range (LDR) sensor image. Here, we design a neural network--based algorithm that outperforms previous irradiance unwrapping methods and, more importantly, we design a perceptually inspired "mantissa" encoding scheme that more efficiently wraps an HDR scene into an LDR sensor. Combined with our reconstruction framework, MantissaCam achieves state-of-the-art results among modulo-type snapshot HDR imaging approaches. We demonstrate the efficacy of our method in simulation and show preliminary results of a prototype MantissaCam implemented with a programmable sensor

    Utilising path-vertex data to improve Monte Carlo global illumination.

    Get PDF
    Efficient techniques for photo-realistic rendering are in high demand across a wide array of industries. Notable applications include visual effects for film, entertainment and virtual reality. Less direct applications such as visualisation for architecture, lighting design and product development also rely on the synthesis of realistic and physically based illumination. Such applications assert ever increasing demands on light transport algorithms, requiring the computation of photo-realistic effects while handling complex geometry, light scattering models and illumination. Techniques based on Monte Carlo integration handle such scenarios elegantly and robustly, but despite seeing decades of focused research and wide commercial support, these methods and their derivatives still exhibit undesirable side effects that are yet to be resolved. In this thesis, Monte Carlo path tracing techniques are improved upon by utilizing path vertex data and intermediate radiance contributions readily available during rendering. This permits the development of novel progressive algorithms that render low noise global illumination while striving to maintain the desirable accuracy and convergence properties of unbiased methods. The thesis starts by presenting a discussion into optical phenomenon, physically based rendering and achieving photo realistic image synthesis. This is followed by in-depth discussion of the published theoretical and practical research in this field, with a focus on stochastic methods and modem rendering methodologies. This provides insight into the issues surrounding Monte Carlo integration both in the general and rendering specific contexts, along with an appreciation for the complexities of solving global light transport. Alternative methods that aim to address these issues are discussed, providing an insight into modem rendering paradigms and their characteristics. Thus, an understanding of the key aspects is obtained, that is necessary to build up and discuss the novel research and contributions to the field developed throughout this thesis. First, a path space filtering strategy is proposed that allows the path-based space of light transport to be classified into distinct subsets. This permits the novel combination of robust path tracing and recent progressive photon mapping algorithms to handle each subset based on the characteristics of the light transport in that space. This produces a hybrid progressive rendering technique that utilises the strengths of existing state of the art Monte Carlo and photon mapping methods to provide efficient and consistent rendering of complex scenes with vanishing bias. The second original contribution is a probabilistic image-based filtering and sample clustering framework that provides high quality previews of global illumination whilst remaining aware of high frequency detail and features in geometry, materials and the incident illumination. As will be seen, the challenges of edge-aware noise reduction are numerous and long standing, particularly when identifying high frequency features in noisy illumination signals. Discontinuities such as hard shadows and glossy reflections are commonly overlooked by progressive filtering techniques, however by dividing path space into multiple layers, once again based on utilising path vertex data, the overlapping illumination of varying intensities, colours and frequencies is more effectively handled. Thus noise is removed from each layer independent of features present in the remaining path space, effectively preserving such features

    Efficient Methods for Computational Light Transport

    Get PDF
    En esta tesis presentamos contribuciones sobre distintos retos computacionales relacionados con transporte de luz. Los algoritmos que utilizan información sobre el transporte de luz están presentes en muchas aplicaciones de hoy en día, desde la generación de efectos visuales, a la detección de objetos en tiempo real. La luz es una valiosa fuente de información que nos permite entender y representar nuestro entorno, pero obtener y procesar esta información presenta muchos desafíos debido a la complejidad de las interacciones entre la luz y la materia. Esta tesis aporta contribuciones en este tema desde dos puntos de vista diferentes: algoritmos en estado estacionario, en los que se asume que la velocidad de la luz es infinita; y algoritmos en estado transitorio, que tratan la luz no solo en el dominio espacial, sino también en el temporal. Nuestras contribuciones en algoritmos estacionarios abordan problemas tanto en renderizado offline como en tiempo real. Nos enfocamos en la reducción de varianza para métodos offline,proponiendo un nuevo método para renderizado eficiente de medios participativos. En renderizado en tiempo real, abordamos las limitacionesde consumo de batería en dispositivos móviles proponiendo un sistema de renderizado que incrementa la eficiencia energética en aplicaciones gráficas en tiempo real. En el transporte de luz transitorio, formalizamos la simulación de este tipo transporte en este nuevo dominio, y presentamos nuevos algoritmos y métodos para muestreo eficiente para render transitorio. Finalmente, demostramos la utilidad de generar datos en este dominio, presentando un nuevo método para corregir interferencia multi-caminos en camaras Timeof- Flight, un problema patológico en el procesamiento de imágenes transitorias.n this thesis we present contributions to different challenges of computational light transport. Light transport algorithms are present in many modern applications, from image generation for visual effects to real-time object detection. Light is a rich source of information that allows us to understand and represent our surroundings, but obtaining and processing this information presents many challenges due to its complex interactions with matter. This thesis provides advances in this subject from two different perspectives: steady-state algorithms, where the speed of light is assumed infinite, and transient-state algorithms, which deal with light as it travels not only through space but also time. Our steady-state contributions address problems in both offline and real-time rendering. We target variance reduction in offline rendering by proposing a new efficient method for participating media rendering. In real-time rendering, we target energy constraints of mobile devices by proposing a power-efficient rendering framework for real-time graphics applications. In transient-state we first formalize light transport simulation under this domain, and present new efficient sampling methods and algorithms for transient rendering. We finally demonstrate the potential of simulated data to correct multipath interference in Time-of-Flight cameras, one of the pathological problems in transient imaging.<br /
    • …
    corecore