243 research outputs found

    Cost-efficient Slicing in Virtual Radio Access Networks

    Get PDF
    Network slicing is a promising technique that has vastly increased the man- ifoldness of network services to be supported through isolated slices in a shared radio access network (RAN). Due to resource isolation, effective re- source allocation for coexisting multiple network slices is essential to maxi- mize network resource efficiency. However, the increased network flexibility and programmability offered by virtualized radio access networks (vRANs) come at the expense of a higher consumption of computing resources at the network edge. Additionally, the relationship between resource efficiency and computing cost minimization is still fuzzy. In this paper, we first perform extensive experiments using the vRAN testbed we developed and assess the vRAN resource consumption under different settings and a varying number of users. Then, leveraging our experimental findings, we formulate the prob- lem of cost-efficient network slice dimensioning, named cost-efficient slicing (CES), which maximizes the difference between total utility and CPU cost of network slices. Numerical results confirm that our solution leads to a cost-efficient resource slicing, while also accomplishing performance isolation and guaranteeing the target data rate and delay specified in the service level agreements

    Progressive introduction of network softwarization in operational telecom networks: advances at architectural, service and transport levels

    Get PDF
    Technological paradigms such as Software Defined Networking, Network Function Virtualization and Network Slicing are altogether offering new ways of providing services. This process is widely known as Network Softwarization, where traditional operational networks adopt capabilities and mechanisms inherit form the computing world, such as programmability, virtualization and multi-tenancy. This adoption brings a number of challenges, both from the technological and operational perspectives. On the other hand, they provide an unprecedented flexibility opening opportunities to developing new services and new ways of exploiting and consuming telecom networks. This Thesis first overviews the implications of the progressive introduction of network softwarization in operational networks for later on detail some advances at different levels, namely architectural, service and transport levels. It is done through specific exemplary use cases and evolution scenarios, with the goal of illustrating both new possibilities and existing gaps for the ongoing transition towards an advanced future mode of operation. This is performed from the perspective of a telecom operator, paying special attention on how to integrate all these paradigms into operational networks for assisting on their evolution targeting new, more sophisticated service demands.Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Eduardo Juan Jacob Taquet.- Secretario: Francisco Valera Pintor.- Vocal: Jorge López Vizcaín

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book

    Developments of 5G Technology

    Get PDF
    This technology is the future of current LTE technology which would be a boost to the future of wireless and computer networks, as the speeds would be way higher than the current LTE networks, which will push the technology to a new level. This technology will make the radio channels to support data access speeds up to 10 Gb/s which will turn the bandwidth radio channels as WiFi. Comparing it with other LTE technology\u27s it has high speed and capacity, support interactive multimedia, voice, internet and its data rate is 1 Gbps which makes it faster than other LTE’s . This is much more effective than other technology’s due to its advanced billing interfaces. This paper provides detail explanation of 5G technology, its architecture, challenges, advantages and disadvantages, issues and ends with future of 5G technology

    Advanced Column Generation Decompositions for Optimizing Provisioning Problems in Optical Networks

    Get PDF
    With the continued growth of Internet traffic, and the scarcity of the optical spectrum, there is a continuous need to optimize the usage of this resource. In the process of provisioning optical networks, telecommunication operators must deal with combinatorial optimization problems that are NP-complete. One of these problems is the Routing and Wavelength Allocation (RWA) which considers the fixed frequency grid, and the Routing and Spectrum Allocation (RSA) which is defined for the flexible frequency grid. While the flexible frequency grid paradigm attempted to improve the spectrum usage, the RSA problem has an additional spectrum dimension that makes it harder than the RWA problem. In this thesis, in continuation of the previous studies, and using the advanced techniques of Integer Linear Programing, we propose a Column Generation algorithm based on a Lightpath decomposition which we implement for both the RWA and the RSA problems. This algorithm proved to be the most efficient so far producing optimal or near optimal solutions, and improving the computation times by two orders of magnitude on average. This algorithm is based on the approach of finding the right decomposition scheme as to be able to solve the Pricing Problem in a polynomial time. This approach can be used in other optimization problems. In addition, we consider the same Configuration decomposition as the previous studies, and we propose an algorithm based on Nested Column Generation. We implemented this algorithm for both the RSA and the RWA problems, which led to a considerable improvement on the previous algorithms that use the same Configuration decomposition. This Nested Column Generation approach can be adopted in other optimization problems

    Efficient sharing mechanisms for virtualized multi-tenant heterogeneous networks

    Get PDF
    The explosion in data traffic, the physical resource constraints, and the insufficient financial incentives for deploying 5G networks, stress the need for a paradigm shift in network upgrades. Typically, operators are also the service providers, which charge the end users with low and flat tariffs, independently of the service enjoyed. A fine-scale management of the network resources is needed, both for optimizing costs and resource utilization, as well as for enabling new synergies among network owners and third-parties. In particular, operators could open their networks to third parties by means of fine-scale sharing agreements over customized networks for enhanced service provision, in exchange for an adequate return of investment for upgrading their infrastructures. The main objective of this thesis is to study the potential of fine-scale resource management and sharing mechanisms for enhancing service provision and for contributing to a sustainable road to 5G. More precisely, the state-of-the-art architectures and technologies for network programmability and scalability are studied, together with a novel paradigm for supporting service diversity and fine-scale sharing. We review the limits of conventional networks, we extend existing standardization efforts and define an enhanced architecture for enabling 5G networks' features (e.g., network-wide centralization and programmability). The potential of the proposed architecture is assessed in terms of flexible sharing and enhanced service provision, while the advantages of alternative business models are studied in terms of additional profits to the operators. We first study the data rate improvement achievable by means of spectrum and infrastructure sharing among operators and evaluate the profit increase justified by a better service provided. We present a scheme based on coalitional game theory for assessing the capability of accommodating more service requests when a cooperative approach is adopted, and for studying the conditions for beneficial sharing among coalitions of operators. Results show that: i) collaboration can be beneficial also in case of unbalanced cost redistribution within coalitions; ii) coalitions of equal-sized operators provide better profit opportunities and require lower tariffs. The second kind of sharing interaction that we consider is the one between operators and third-party service providers, in the form of fine-scale provision of customized portions of the network resources. We define a policy-based admission control mechanism, whose performance is compared with reference strategies. The proposed mechanism is based on auction theory and computes the optimal admission policy at a reduced complexity for different traffic loads and allocation frequencies. Because next-generation services include delay-critical services, we compare the admission control performances of conventional approaches with the proposed one, which proves to offer near real-time service provision and reduced complexity. Besides, it guarantees high revenues and low expenditures in exchange for negligible losses in terms of fairness towards service providers. To conclude, we study the case where adaptable timescales are adopted for the policy-based admission control, in order to promptly guarantee service requirements over traffic fluctuations. In order to reduce complexity, we consider the offline pre­computation of admission strategies with respect to reference network conditions, then we study the extension to unexplored conditions by means of computationally efficient methodologies. Performance is compared for different admission strategies by means of a proof of concept on real network traces. Results show that the proposed strategy provides a tradeoff in complexity and performance with respect to reference strategies, while reducing resource utilization and requirements on network awareness.La explosion del trafico de datos, los recursos limitados y la falta de incentivos para el desarrollo de 5G evidencian la necesidad de un cambio de paradigma en la gestion de las redes actuales. Los operadores de red suelen ser tambien proveedores de servicios, cobrando tarifas bajas y planas, independientemente del servicio ofrecido. Se necesita una gestion de recursos precisa para optimizar su utilizacion, y para permitir nuevas sinergias entre operadores y proveedores de servicios. Concretamente, los operadores podrian abrir sus redes a terceros compartiendolas de forma flexible y personalizada para mejorar la calidad de servicio a cambio de aumentar sus ganancias como incentivo para mejorar sus infraestructuras. El objetivo principal de esta tesis es estudiar el potencial de los mecanismos de gestion y comparticion de recursos a pequei\a escala para trazar un camino sostenible hacia el 5G. En concreto, se estudian las arquitecturas y tecnolog fas mas avanzadas de "programabilidad" y escalabilidad de las redes, junto a un nuevo paradigma para la diversificacion de servicios y la comparticion de recursos. Revisamos los limites de las redes convencionales, ampliamos los esfuerzos de estandarizacion existentes y definimos una arquitectura para habilitar la centralizacion y la programabilidad en toda la red. La arquitectura propuesta se evalua en terminos de flexibilidad en la comparticion de recursos, y de mejora en la prestacion de servicios, mientras que las ventajas de un modelo de negocio alternativo se estudian en terminos de ganancia para los operadores. En primer lugar, estudiamos el aumento en la tasa de datos gracias a un uso compartido del espectro y de las infraestructuras, y evaluamos la mejora en las ganancias de los operadores. Presentamos un esquema de admision basado en la teoria de juegos para acomodar mas solicitudes de servicio cuando se adopta un enfoque cooperativo, y para estudiar las condiciones para que la reparticion de recursos sea conveniente entre coaliciones de operadores. Los resultados ensei\an que: i) la colaboracion puede ser favorable tambien en caso de una redistribucion desigual de los costes en cada coalicion; ii) las coaliciones de operadores de igual tamai\o ofrecen mejores ganancias y requieren tarifas mas bajas. El segundo tipo de comparticion que consideramos se da entre operadores de red y proveedores de servicios, en forma de provision de recursos personalizada ya pequei\a escala. Definimos un mecanismo de control de trafico basado en polfticas de admision, cuyo rendimiento se compara con estrategias de referencia. El mecanismo propuesto se basa en la teoria de subastas y calcula la politica de admision optima con una complejidad reducida para diferentes cargas de trafico y tasa de asignacion. Con particular atencion a servicios 5G de baja latencia, comparamos las prestaciones de estrategias convencionales para el control de admision con las del metodo propuesto, que proporciona: i) un suministro de servicios casi en tiempo real; ii) una complejidad reducida; iii) unos ingresos elevados; y iv) unos gastos reducidos, a cambio de unas perdidas insignificantes en terminos de imparcialidad hacia los proveedores de servicios. Para concluir, estudiamos el caso en el que se adoptan escalas de tiempo adaptables para el control de admision, con el fin de garantizar puntualmente los requisitos de servicio bajo diferentes condiciones de trafico. Para reducir la complejidad, consideramos el calculo previo de las estrategias de admision con respecto a condiciones de red de referenda, adaptables a condiciones inexploradas por medio de metodologias computacionalmente eficientes. Se compara el rendimiento de diferentes estrategias de admision sobre trazas de trafico real. Los resultados muestran que la estrategia propuesta equilibra complejidad y ganancias, mientras se reduce la utilizacion de recursos y la necesidad de conocer el estado exacto de la red.Postprint (published version

    Network virtualization in next-generation cellular networks: a spectrum pooling approach

    Get PDF
    The hardship of expanding the cellular network market results from the tremendous high cost of mobile infrastructure, i.e. the capital expenditures (CAPEX) and the operational expenditures (OPEX). Spectrum Sharing is one of the proposed solution for the high-cost of scalability of cellular networks. However, most of the proposed spectrum pooling frameworks in the literature are mostly approached from a technical view besides there are no good cost models based on real datasets for quantifying the circumstances under which sharing the spectrum and network resources would be beneficial to mobile operators. In this thesis, by studying different sharing scenarios in a fiber-based backhaul mobile network, we assess the incentives for service providers (SPs) to share spectrum/infrastructure in different cellular market areas/economic areas (CMA/BEAs) with different population density, allocated bandwidth (BW), spectrum bid values and considering different network topologies. Moreover, we look at the technical problem of sharing the spectrum between two SPs sharing the same basestation (BS), yet they have different traffic demand as well as different QoS constraints. We design a resource allocation scheme to provision real-time (RT), non-real-time (NRT) as well as Ultra-reliable Low Latency Communications (URLLC) traffic in a single shared BS scenario such that SPs achieve isolation, fairness and enforce their QoS constraints. Finally, we exploit spectrum pooling to develop an approach for dynamically re-configuring the base stations that survive a disaster and are powered by a microgrid to form a multi-hop mesh network in order to provide local cellular service

    Design, implementation and experimental evaluation of a network-slicing aware mobile protocol stack

    Get PDF
    Mención Internacional en el título de doctorWith the arrival of new generation mobile networks, we currently observe a paradigm shift, where monolithic network functions running on dedicated hardware are now implemented as software pieces that can be virtualized on general purpose hardware platforms. This paradigm shift stands on the softwarization of network functions and the adoption of virtualization techniques. Network Function Virtualization (NFV) comprises softwarization of network elements and virtualization of these components. It brings multiple advantages: (i) Flexibility, allowing an easy management of the virtual network functions (VNFs) (deploy, start, stop or update); (ii) efficiency, resources can be adequately consumed due to the increased flexibility of the network infrastructure; and (iii) reduced costs, due to the ability of sharing hardware resources. To this end, multiple challenges must be addressed to effectively leverage of all these benefits. Network Function Virtualization envisioned the concept of virtual network, resulting in a key enabler of 5G networks flexibility, Network Slicing. This new paradigm represents a new way to operate mobile networks where the underlying infrastructure is "sliced" into logically separated networks that can be customized to the specific needs of the tenant. This approach also enables the ability of instantiate VNFs at different locations of the infrastructure, choosing their optimal placement based on parameters such as the requirements of the service traversing the slice or the available resources. This decision process is called orchestration and involves all the VNFs withing the same network slice. The orchestrator is the entity in charge of managing network slices. Hands-on experiments on network slicing are essential to understand its benefits and limits, and to validate the design and deployment choices. While some network slicing prototypes have been built for Radio Access Networks (RANs), leveraging on the wide availability of radio hardware and open-source software, there is no currently open-source suite for end-to-end network slicing available to the research community. Similarly, orchestration mechanisms must be evaluated as well to properly validate theoretical solutions addressing diverse aspects such as resource assignment or service composition. This thesis contributes on the study of the mobile networks evolution regarding its softwarization and cloudification. We identify software patterns for network function virtualization, including the definition of a novel mobile architecture that squeezes the virtualization architecture by splitting functionality in atomic functions. Then, we effectively design, implement and evaluate of an open-source network slicing implementation. Our results show a per-slice customization without paying the price in terms of performance, also providing a slicing implementation to the research community. Moreover, we propose a framework to flexibly re-orchestrate a virtualized network, allowing on-the-fly re-orchestration without disrupting ongoing services. This framework can greatly improve performance under changing conditions. We evaluate the resulting performance in a realistic network slicing setup, showing the feasibility and advantages of flexible re-orchestration. Lastly and following the required re-design of network functions envisioned during the study of the evolution of mobile networks, we present a novel pipeline architecture specifically engineered for 4G/5G Physical Layers virtualized over clouds. The proposed design follows two objectives, resiliency upon unpredictable computing and parallelization to increase efficiency in multi-core clouds. To this end, we employ techniques such as tight deadline control, jitter-absorbing buffers, predictive Hybrid Automatic Repeat Request, and congestion control. Our experimental results show that our cloud-native approach attains > 95% of the theoretical spectrum efficiency in hostile environments where stateof- the-art architectures collapse.This work has been supported by IMDEA Networks InstitutePrograma de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Francisco Valera Pintor.- Secretario: Vincenzo Sciancalepore.- Vocal: Xenofon Fouka
    • …
    corecore