1,907 research outputs found

    Cost-effective low-delay cloud video conferencing

    Get PDF
    The cloud computing paradigm has been advocated in recent video conferencing system design, which exploits the rich on-demand resources spanning multiple geographic regions of a distributed cloud, for better conferencing experience. A typical architectural design in cloud environment is to create video conferencing agents, i.e., virtual machines, in each cloud site, assign users to the agents, and enable inter-user communication through the agents. Given the diversity of devices and network connectivities of the users, the agents may also transcode the conferencing streams to the best formats and bitrates. In this architecture, two key issues exist on how to effectively assign users to agents and how to identify the best agent to perform a transcoding task, which are nontrivial due to the following: (1) the existing proximity-based assignment may not be optimal in terms of inter-user delay, which fails to consider the whereabouts of the other users in a conferencing session; (2) the agents may have heterogeneous bandwidth and processing availability, such that the best transcoding agents should be carefully identified, for cost minimization while best serving all the users requiring the transcoded streams. To address these challenges, we formulate the user-to-agent assignment and transcoding-agent selection problems, which targets at minimizing the operational cost of the conferencing provider while keeping the conferencing delay low. The optimization problem is combinatorial in nature and difficult to solve. Using Markov approximation framework, we design a decentralized algorithm that provably converges to a bounded neighborhood of the optimal solution. An agent ranking scheme is also proposed to properly initialize our algorithm so as to improve its convergence. The results from a prototype system implementation show that our design in a set of Internet-scale scenarios reduces the operational cost by 77% as compared to a commonly-adopted alternative, while simultaneously yielding lower conferencing delays.published_or_final_versio

    Considering Telematic Tools for Conferences

    Get PDF
    Participation in conferences is an elemental component of professional life throughout the world. Two problems offset the social synergy gained from attending a far-away gathering of like-minded people. The first is the highly pronounced carbon footprint from air travel, and the second is the expense involved to participate in a conference which may be on another continent. These factors prevent many from participating who could otherwise benefit as well as contribute. As videoconferencing becomes more common and more sophisticated, it will serve as an alternative that not only benefits constituencies, but will expand the reach of a conference to more communities. This paper outlines a rationale, ideas, and a blueprint for a video conferencing toolkit intended to merge both on-site and on-line participants, via tailored applications and best practices. These include high grade audio/video capabilities common to telematic artists, in addition to integral components and practices of online presence that address issues of event management, social networking, collaboration-communication, information exchange, and asynchronous presence

    Optimizing Quality for Collaborative Video Viewing

    Get PDF
    The increasing popularity of distance learning and online courses has highlighted the lack of collaborative tools for student groups. In addition, the introduction of lecture videos into the online curriculum has drawn attention to the disparity in the network resources used by the students. We present an architecture and adaptation model called AI2TV (Adaptive Internet Interactive Team Video), a system that allows geographically dispersed participants, possibly some or all disadvantaged in network resources, to collaboratively view a video in synchrony. AI2TV upholds the invariant that each participant will view semantically equivalent content at all times. Video player actions, like play, pause and stop, can be initiated by any of the participants and the results of those actions are seen by all the members. These features allow group members to review a lecture video in tandem to facilitate the learning process. We employ an autonomic (feedback loop) controller that monitors clients' video status and adjusts the quality of the video according to the resources of each client. We show in experimental trials that our system can successfully synchronize video for distributed clients while, at the same time, optimizing the video quality given actual (fluctuating) bandwidth by adaptively adjusting the quality level for each participant

    Semi-fluid: A Content Distribution Model For Faster Dissemination Of Data

    Get PDF
    Tesis ini mencadangkan serta melaksanakan suatu model agihan kandungan bagi mengurangkan atau meminimumkan kelengahan penyaluran data sebaya. Buat masa ini, agihan kandungan dalam rangkaian tindihan-atas adalah berdasarkan dua model berikut: model Kelulan dan model Bendalir. This thesis proposes and implements a novel content distribution model for reducing or minimizing delay in data dissemination
    corecore