1,209 research outputs found

    Investigating Decision Support Techniques for Automating Cloud Service Selection

    Full text link
    The compass of Cloud infrastructure services advances steadily leaving users in the agony of choice. To be able to select the best mix of service offering from an abundance of possibilities, users must consider complex dependencies and heterogeneous sets of criteria. Therefore, we present a PhD thesis proposal on investigating an intelligent decision support system for selecting Cloud based infrastructure services (e.g. storage, network, CPU).Comment: Accepted by IEEE Cloudcom 2012 - PhD consortium trac

    MultiLibOS: an OS architecture for cloud computing

    Full text link
    Cloud computing is resulting in fundamental changes to computing infrastructure, yet these changes have not resulted in corresponding changes to operating systems. In this paper we discuss some key changes we see in the computing infrastructure and applications of IaaS systems. We argue that these changes enable and demand a very different model of operating system. We then describe the MulitLibOS architecture we are exploring and how it helps exploit the scale and elasticity of integrated systems while still allowing for legacy software run on traditional OSes

    Location-aware deep learning-based framework for optimizing cloud consumer quality of service-based service composition

    Get PDF
    The expanding propensity of organization users to utilize cloud services urges to deliver services in a service pool with a variety of functional and non-functional attributes from online service providers. brokers of cloud services must intense rivalry competing with one another to provide quality of service (QoS) enhancements. Such rivalry prompts a troublesome and muddled providing composite services on the cloud using a simple service selection and composition approach. Therefore, cloud composition is considered a non-deterministic polynomial (NP-hard) and economically motivated problem. Hence, developing a reliable economic model for composition is of tremendous interest and to have importance for the cloud consumer. This paper provides “A location-aware deep learning framework for improving the QoS-based service composition for cloud consumers”. The proposed framework is firstly reducing the dimensions of data. Secondly, it applies a combination of the deep learning long short-term memory network and particle swarm optimization algorithm additionally to considering the location parameter to correctly forecast the QoS provisioned values. Finally, it composes the ideal services need to reduce the customer cost function. The suggested framework's performance has been demonstrated using a real dataset, proving that it superior the current models in terms of prediction and composition accuracy

    Going Back and Forth: Efficient Multi-deployment and Multi-snapshotting on Clouds

    Get PDF
    Cloud computing has changed the way people think of using resources. Especially, the IaaS (Infrastructure as a Service) allows users to make use of unlimited resources in pay per use fashion. Virtualization is the technology based on which the cloud service providers are able to provide or share computational resources and data centers to users. Though this approach is practical, it throws certain challenges in terms of designing and development of IaaS middleware. One such challenge is the need for deploying thousands of VM instances to meet the requirements of growing number of users. In the process another challenge is to snapshot multiple images and persisting them towards management tasks like stopping VMs temporarily and resuming them as and when required. The presence of data centers in different configurations enables the simultaneous deployment and snapshotting is important. This capability should be coupled with another feature that is the whole mechanism should be hypervisor independent. To achieve this, a new virtual file system is proposed in this paper. This is basing on lazy transfer scheme with VM optimization and object versioning that takes care of multi-snapshotting and multi-deployment simultaneously and effectively. The experiments have shown that the new filing system and related techniques have improved performance, and bandwidth utilization is reduced by 90%

    Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud

    Full text link
    With the advent of cloud computing, organizations are nowadays able to react rapidly to changing demands for computational resources. Not only individual applications can be hosted on virtual cloud infrastructures, but also complete business processes. This allows the realization of so-called elastic processes, i.e., processes which are carried out using elastic cloud resources. Despite the manifold benefits of elastic processes, there is still a lack of solutions supporting them. In this paper, we identify the state of the art of elastic Business Process Management with a focus on infrastructural challenges. We conceptualize an architecture for an elastic Business Process Management System and discuss existing work on scheduling, resource allocation, monitoring, decentralized coordination, and state management for elastic processes. Furthermore, we present two representative elastic Business Process Management Systems which are intended to counter these challenges. Based on our findings, we identify open issues and outline possible research directions for the realization of elastic processes and elastic Business Process Management.Comment: Please cite as: S. Schulte, C. Janiesch, S. Venugopal, I. Weber, and P. Hoenisch (2015). Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud. Future Generation Computer Systems, Volume NN, Number N, NN-NN., http://dx.doi.org/10.1016/j.future.2014.09.00
    • …
    corecore