63 research outputs found

    QoS-aware architectures, technologies, and middleware for the cloud continuum

    Get PDF
    The recent trend of moving Cloud Computing capabilities to the Edge of the network is reshaping how applications and their middleware supports are designed, deployed, and operated. This new model envisions a continuum of virtual resources between the traditional cloud and the network edge, which is potentially more suitable to meet the heterogeneous Quality of Service (QoS) requirements of diverse application domains and next-generation applications. Several classes of advanced Internet of Things (IoT) applications, e.g., in the industrial manufacturing domain, are expected to serve a wide range of applications with heterogeneous QoS requirements and call for QoS management systems to guarantee/control performance indicators, even in the presence of real-world factors such as limited bandwidth and concurrent virtual resource utilization. The present dissertation proposes a comprehensive QoS-aware architecture that addresses the challenges of integrating cloud infrastructure with edge nodes in IoT applications. The architecture provides end-to-end QoS support by incorporating several components for managing physical and virtual resources. The proposed architecture features: i) a multilevel middleware for resolving the convergence between Operational Technology (OT) and Information Technology (IT), ii) an end-to-end QoS management approach compliant with the Time-Sensitive Networking (TSN) standard, iii) new approaches for virtualized network environments, such as running TSN-based applications under Ultra-low Latency (ULL) constraints in virtual and 5G environments, and iv) an accelerated and deterministic container overlay network architecture. Additionally, the QoS-aware architecture includes two novel middlewares: i) a middleware that transparently integrates multiple acceleration technologies in heterogeneous Edge contexts and ii) a QoS-aware middleware for Serverless platforms that leverages coordination of various QoS mechanisms and virtualized Function-as-a-Service (FaaS) invocation stack to manage end-to-end QoS metrics. Finally, all architecture components were tested and evaluated by leveraging realistic testbeds, demonstrating the efficacy of the proposed solutions

    BumbleBee: Secure Two-party Inference Framework for Large Transformers

    Get PDF
    Large transformer-based models have realized state- of-the-art performance on lots of real-world tasks such as natural language processing and computer vision. However, with the increasing sensitivity of the data and tasks they handle, privacy has become a major concern during model deployment. In this work, we focus on private inference in two-party settings, where one party holds private inputs and the other holds the model. We introduce BumbleBee, a fast and communication-friendly two-party private transformer inference system. Our contributions are three-fold: Firstly, we present optimized homomorphic encryption-based proto- cols that enable the multiplication of large matrices with 80 – 90% less communication cost than existing methods. Secondly, we offer a general method for designing efficient and accurate protocols for non-linear activation functions in transformers. Our activation protocols have demonstrated speed and reduced the communication overhead by 80 – 95% over two existing methods. Finally, we conducted intensive benchmarks on several large transformer models. Results show that BumbleBee is more than one order of magnitude faster than Iron (NeurIPS22)

    Analysis and Design of a Sub-THz Ultra-Wideband Phased-Array Transmitter

    Get PDF
    This thesis investigates circuits and systems for broadband high datarate transmitter systems in the millimeter-wave (mm-wave) spectrum. During the course of this dissertation, the design process and characterization of a power efficient and wideband binary phase-shift keying (BPSK) transmitter integrated circuit (IC) with local oscillator (LO) frequency multiplication and 360° phase control for beam steering is studied. All required circuit blocks are designed based on the theoretical analysis of the underlying principles, optimized, fabricated and characterized in the research laboratory targeting low power consumption, high efficiency and broadband operation. The phase-controlled push-push (PCPP) architecture enabling frequency multiplication by four in a single stage is analytically studied and characterized finding an optimum between output power and second harmonic suppression depending on the input amplitude. A PCPP based LO chain is designed. A circuit is fabricated establishing the feasibility of this architecture for operation at more than 200 GHz. Building on this, a second circuit is designed, which produces among the highest saturated output powers at 2 dBm. At less than 100 mW of direct current (DC) power consumption, this results in a power-added efficiency (PAE) of 1.6 % improving the state of the art by almost 30 %. Phase-delayed and time-delayed approaches to beam steering are analyzed, identifying and discussing design challenges like area consumption, signal attenuation and beam squint. A 60 GHz active vector-sum phase-shifter with high gain of 11.3 dB and output power of 5 dBm, improving the PAE of the state of the art by a factor of 30 achieving 6.29 %, is designed. The high gain is possible due to an optimization of the orthogonal signal creation stage enabled by studying and comparing different architectures leading to a trade off of lower signal attenuation for higher area consumption in the chosen electromagnetic coupler. By combining this with a frequency quadrupler, a phase steering enabled LO chain for operation at 220 GHz is created and characterized, confirming the preceding analysis of the phase-frequency relation during multiplication. It achieves a power gain of 21 dB, outperforming comparable designs by 25 dB. This allows the combination of phase control, frequency multiplication and pre-amplification. The radio frequency (RF) efficiency is increased 40-fold to 0.99 %, with a total power consumption of 105 mW. Motivated by the distorting effect of beam squint in phase-delayed broadband array systems, a novel analog hybrid beam steering architecture is devised, combining phase-delayed and time-delayed steering with the goal of reducing the beam squint of phase-delayed systems and large area consumption of time-delayed circuits. An analytical design procedure is presented leading to the research finding of a beam squint reduction potential of more than 83 % in an ideal system. Here, the increase in area consumption is outweighed by the reduction in beam squint. An IC with a low power consumption of 4.3 mW has been fabricated and characterized featuring the first time delay circuit operating at above 200 GHz. By producing most of the beam direction by means of time delay the beam squinting can be reduced by more than 75 % in measurements while the subsequent phase shifter ensures continuous beam direction control. Together, the required silicon area can be reduced to 43 % compared to timedelayed systems in the same frequency range. Based on studies of the optimum signal feeding and input matching of a Gilbert cell, an ultra-wideband, low-power mixer was designed. A bandwidth of more than 100 GHz was achieved exceeding the state of the art by 23 %. With a conversion gain of –13 dB, this enables datarates of more than 100 Gbps in BPSK operation. The findings are consolidated in an integrated transmitter operating around 246 GHz doubling the highest published measured datarates of transmitters with LO chain and power amplifier in BPSK operation to 56 Gbps. The resulting transmitter efficiency of 7.4 pJ/bit improves the state of the art by 70 % and 50 % over BPSK and quadrature phaseshift keying (QPSK) systems, respectively. Together, the results of this work form the basis for low-power and efficient next-generation wireless applications operating at many times the datarates available today.:Abstract 3 Zusammenfassung 5 List of Symbols 11 List of Acronyms 17 Prior Publications 19 1. Introduction 21 1.1. Motivation........................... 21 1.2. Objective of this Thesis ................... 25 1.3. Structure of this Thesis ................... 27 2. Overview of Employed Technologies and Techniques 29 2.1. IntegratedCircuitTechnology................ 29 2.2. Transmission Lines and Passive Structures . . . . . . . . 35 2.3. DigitalModulation ...................... 41 3. Frequency Quadrupler 45 3.1. Theoretical Analysis of Frequency Multiplication Circuits 45 3.2. Phase-Controlled Push-Push Principle for Frequency Quadrupling.......................... 49 3.3. Stand-alone Phase-Controlled Push-Push Quadrupler . 60 3.4. Phase-Controlled Push-Push Quadrupler based LO-chain with High Output Power ............... 72 9 4. Array Systems and Dynamic Beam Steering 91 4.1. Theoretical Analysis of BeamSteering. . . . . . . . . . . 95 4.2. Local Oscillator Phase Shifting with Vector-Modulator PhaseShifters......................... 107 4.3. Hybrid True-Time and Phase-Delayed Beam Steering . 131 5. Ultra-Wide Band Modulator for BPSK Operation 155 6. Broadband BPSK Transmitter System for Datarates up to 56 Gbps 167 6.1. System Architecture ..................... 168 6.2. Measurement Technique and Results . . . . . . . . . . . 171 6.3. Summary and performance comparison . . . . . . . . . 185 7. Conclusion and Outlook 189 A. Appendix 195 Bibliography 199 List of Figures 227 Note of Thanks 239 Curriculum Vitae 241Diese Dissertation untersucht Schaltungen und Systeme für breitbandige Transmittersysteme mit hoher Datenrate im Millimeterwellen (mm-wave) Spektrum. Im Rahmen dieser Arbeit werden der Entwurfsprozess und die Charakterisierung eines leistungseffizienten und breitbandigen integrierten Senders basierend auf binärer Phasenumtastung (BPSK) mit Frequenzvervielfachung des Lokaloszillatorsignals und 360°-Phasenkontrolle zur Strahlsteuerung untersucht. Alle erforderlichen Schaltungsblöcke werden auf Grundlage von theoretischen Analysen der zugrundeliegenden Prinzipien entworfen, optimiert, hergestellt und im Forschungslabor charakterisiert, mit den Zielen einer niedrigen Leistungsaufnahme, eines hohen Wirkungsgrades und einer möglichst großen Bandbreite. Die phasengesteuerte Push-Push (PCPP)-Architektur, welche eine Frequenzvervierfachung in einer einzigen Stufe ermöglicht, wird analytisch untersucht und charakterisiert. Dabei wird ein Optimum zwischen Ausgangsleistung und Unterdrückung der zweiten Harmonischen des Eingangssignals in Abhängigkeit von der Eingangsamplitude gefunden. Es wird eine LO-Kette auf PCPP-Basis entworfen. Eine Schaltung wird präsentiert, die die Machbarkeit dieser Architektur für den Betrieb bei mehr als 200 GHz nachweist. Darauf aufbauend wird eine zweite Schaltung entworfen, die mit 2 dBm eine der höchsten publizierten gesättigten Ausgangsleistungen erzeugt. Mit einer Leistungsaufnahme von weniger als 100mW ergibt sich ein Leistungswirkungsgrad (PAE) von 1.6 %, was den Stand der Technik um fast 30 % verbessert. Es werden phasenverzögerte und zeitverzögerte Ansätze zur Steuerung der Strahlrichtung analysiert, wobei Entwicklungsherausforderungen wie Flächenverbrauch, Signaldämpfung und Strahlschielen identifiziert und diskutiert werden. Ein aktiver Vektorsummen-Phasenschieber mit hoher Verstärkung von 11.3 dB und einer Ausgangsleistung von 5 dBm, der mit einer PAE von 6.29 % den Stand der Technik um den Faktor 30 verbessert, wird entworfen. Die hohe Verstärkung ist zum Teil auf eine Optimierung der orthogonalen Signalerzeugungsstufe zurückzuführen, die durch die Untersuchung und den Vergleich verschiedener Architekturen ermöglicht wird. Bei der Entscheidung für einen elektromagnetischen Koppler rechtfertigt die geringere Signaldämpfung einen höheren Flächenverbrauch. Durch die Kombination mit einem Frequenzvervierfacher wird eine LO-Kette mit Phasensteuerung für den Betrieb bei 220 GHz geschaffen und charakterisiert, was die vorangegangene Analyse der Phasen-FrequenzBeziehung während der Multiplikation bestätigt. Sie erreicht einen Leistungsgewinn von 21 dB und übertrifft damit vergleichbare Designs um 25dB. Dies ermöglicht die Kombination von Phasensteuerung, Frequenzvervielfachung und Vorverstärkung. Der HochfrequenzWirkungsgrad wird um das 40-fache auf 0.99 % bei einer Gesamtleistungsaufnahme von 105 mW gesteigert. Motiviert durch den verzerrenden Effekt des Strahlenschielens in phasengesteuerten Breitbandarraysystemen, wird eine neuartige analoge hybride Strahlsteuerungsarchitektur untersucht, die phasenverzögerte und zeitverzögerte Steuerung kombiniert. Damit wird sowohl das Strahlenschielen phasenverzögerter Systeme als auch der große Flächenverbrauch zeitverzögerter Schaltungen reduziert. Es wird ein analytisches Entwurfsverfahren vorgestellt, das zu dem Forschungsergebnis führt, dass in einem idealen System ein Potenzial zur Reduktion des Strahlenschielens von mehr als 83 % besteht. Dabei wird die Zunahme des Flächenverbrauchs durch die Verringerung des Strahlenschielens aufgewogen. Es wird ein IC mit einer geringen Leistungsaufnahme von 4.3mW hergestellt und charakterisiert. Dabei wird die erste Zeitverzögerungsschaltung entworfen, die bei über 200 GHz arbeitet. Durch die Erzeugung eines Großteils der Strahlrichtung mittels Zeitverzögerung kann das Schielen des Strahls bei Messungen um mehr als 75% reduziert werden, während der nachfolgende Phasenschieber eine kontinuierliche Steuerung der Strahlrichtung gewährleistet. Insgesamt kann die benötigte Siliziumfläche im Vergleich zu zeitverzögerten Systemen im gleichen Frequenzbereich auf 43 % reduziert werden. Auf der Grundlage von Studien zur optimalen Signaleinspeisung und Eingangsanpassung einer Gilbert-Zelle wird ein Ultrabreitband-Mischer mit geringem Stromverbrauch entworfen. Dieser erreicht eine Ausgangsbandbreite von mehr als 100 GHz, die den Stand der Technik um 23% übertrifft. Bei einer Wandlungsverstärkung von –13dB ermöglicht dies Datenraten von mehr als 100 Gbps im BPSK-Betrieb. Die Erkenntnisse werden in einem integrierten, breitbandigen Sender konsolidiert, der um 246 GHz arbeitet und die höchsten veröffentlichten gemessenen Datenraten für Sender mit LO-Signalkette und Leistungsverstärker im BPSK-Betrieb auf 56 Gbps verdoppelt. Die daraus resultierende Transmitter-Effizienz von 7.4 pJ/bit verbessert den Stand der Technik um 70 % bzw. 50 % gegenüber BPSKund Quadratur Phasenumtastung (QPSK)-Systemen. Zusammen bilden die Ergebnisse dieser Arbeit die Grundlage für stromsparende, effiziente, mobile Funkanwendungen der nächsten Generation mit einem Vielfachen der heute verfügbaren Datenraten.:Abstract 3 Zusammenfassung 5 List of Symbols 11 List of Acronyms 17 Prior Publications 19 1. Introduction 21 1.1. Motivation........................... 21 1.2. Objective of this Thesis ................... 25 1.3. Structure of this Thesis ................... 27 2. Overview of Employed Technologies and Techniques 29 2.1. IntegratedCircuitTechnology................ 29 2.2. Transmission Lines and Passive Structures . . . . . . . . 35 2.3. DigitalModulation ...................... 41 3. Frequency Quadrupler 45 3.1. Theoretical Analysis of Frequency Multiplication Circuits 45 3.2. Phase-Controlled Push-Push Principle for Frequency Quadrupling.......................... 49 3.3. Stand-alone Phase-Controlled Push-Push Quadrupler . 60 3.4. Phase-Controlled Push-Push Quadrupler based LO-chain with High Output Power ............... 72 9 4. Array Systems and Dynamic Beam Steering 91 4.1. Theoretical Analysis of BeamSteering. . . . . . . . . . . 95 4.2. Local Oscillator Phase Shifting with Vector-Modulator PhaseShifters......................... 107 4.3. Hybrid True-Time and Phase-Delayed Beam Steering . 131 5. Ultra-Wide Band Modulator for BPSK Operation 155 6. Broadband BPSK Transmitter System for Datarates up to 56 Gbps 167 6.1. System Architecture ..................... 168 6.2. Measurement Technique and Results . . . . . . . . . . . 171 6.3. Summary and performance comparison . . . . . . . . . 185 7. Conclusion and Outlook 189 A. Appendix 195 Bibliography 199 List of Figures 227 Note of Thanks 239 Curriculum Vitae 24

    Distributed Resource Management in Converged Telecommunication Infrastructures

    Get PDF
    Η πέμπτη γενιά (5G) των ασύρματων και κινητών επικοινωνιών αναμένεται να έχει εκτεταμένο αντίκτυπο σε τομείς πέρα από αυτόν της τεχνολογίας πληροφοριών και επικοινωνιών (Information and Communications Technology - ICT). Το 5G ευθυγραμμίζεται με την 4η βιομηχανική εξέλιξη (4th industrial evolution), θολώνοντας τα όρια μεταξύ της φυσικής, της ψηφιακής και της βιολογικής σφαίρας. Σχεδιάστηκε για να προσφέρει δυνατότητες πολλαπλών υπηρεσιών και χρηστών, εκπληρώνοντας ταυτόχρονα πολλαπλές απαιτήσεις και επιχειρηματικά οικοσυστήματα. Ωστόσο, ορισμένες υπηρεσίες, όπως η επαυξημένη πραγματικότητα (Augmented Reality -AR), το εργοστάσιο του μέλλοντος (Factory of the Future) κ.λπ. θέτουν προκλήσεις για την ανάπτυξη μιας ενιαίας 5G υποδομής με βάση την ενεργειακή και οικονομική αποδοτικότητα. Σε αυτή τη κατεύθυνση, η παρούσα διδακτορική διατριβή υιοθετεί την ιδέα μιας καθολικής πλατφόρμας 5G που ενσωματώνει μια πληθώρα τεχνολογιών δικτύωσης (ασύρματες και ενσύρματες), και στοχεύει στην ανάπτυξη μαθηματικών εργαλείων, αλγορίθμων και πρωτοκόλλων για την ενεργειακή και λειτουργική βελτιστοποίηση αυτής της υποδομής και των υπηρεσιών που παρέχει. Αυτή η υποδομή διασυνδέει υπολογιστικούς, αποθηκευτικούς και δικτυακούς πόρους μέσω του προγραμματιζόμενου υλισμικού (hardware-HW) και της λογισμικοποίησης του δικτύου (network softwarisation). Με αυτό τον τρόπο, επιτρέπει την παροχή οποιασδήποτε υπηρεσίας με την ευέλικτη και αποτελεσματική μίξη και αντιστοίχιση πόρων δικτύου, υπολογισμού και αποθήκευσης. Αρχικά, η μελέτη επικεντρώνεται στις προκλήσεις των δικτύων ραδιοπρόσβασης επόμενης γενιάς (NG-RAN), τα οποία αποτελούνται από πολλαπλές τεχνολογίες δικτύου για τη διασύνδεση ενός ευρέος φάσματος συσκευών με υπολογιστικούς και αποθηκευτικούς πόρους. Η ανάπτυξη μικρών κυψελών (small cells) είναι ζωτικής σημασίας για τη βελτίωση της φασματικής απόδοσης και της ρυθμαπόδοσης και μπορεί να επιτευχθεί είτε μέσω παραδοσιακών κατανεμημένων δικτύων ραδιοπρόσβασης (D-RAN) είτε μέσω δικτύων ραδιοπρόσβασης νέφους (C-RAN). Ενώ το C-RAN προσφέρει μεγάλα οφέλη όσο αφορά την επεξεργασία σήματος και τον συντονισμό σε σχέση με τα D-RAN, απαιτεί υψηλό εύρος ζώνης μετάδοσης και επιβάλλει σοβαρούς περιορισμούς καθυστέρησης στο δίκτυο μεταφοράς. Για την αντιμετώπιση αυτών των ζητημάτων, προτείνεται μια νέα αρχιτεκτονική «αποσύνθεσης των πόρων». Σύμφωνα με αυτήν, οι λειτουργιές βασικής επεξεργασίας σήματος (BBU functions) μπορούν να διαχωριστούν και να εκτελεστούν είτε στην ίδια θέση με τη κεραία (RU), είτε απομακρυσμένα σε κάποια μονάδα επεξεργασίας που βρίσκεται κοντά (DU) ή μακριά (CU) από την κεραία. Αυτή η έννοια της «αποσύνθεσης των πόρων» επιτρέπει την πρόσβαση σε κοινόχρηστους πόρους που παρέχονται από κέντρα δεδομένων μικρής ή μεγάλης κλίμακας, χωρίς να απαιτείται ιδιοκτησία των πόρων. Ωστόσο, η προσέγγιση αυτή απαιτεί την ανάπτυξη νέων πλαισίων βελτιστοποίησης για τη βελτίωση της αποδοτικότητας και της ευελιξίας των υποδομών 5G, ώστε να διαχειρίζονται αποτελεσματικά τους διαχωρισμένους πόρους. Καθοριστικό ρόλο σε αυτό αποτελεί η αρχιτεκτονική της Δικτύωσης Καθορισμένης από Λογισμικό (SDN), η οποία στοχεύει να επιτρέψει την προγραμματιζόμενη και δυναμική διαχείριση των πόρων του δικτύου μέσω κεντρικού ελέγχου. Έχοντας υπόψιν τα παραπάνω, στο πρώτο μέρος της διατριβής αναπτύσσεται ένα πλαίσιο βελτιστοποίησης που προσδιορίζει το βέλτιστο λειτουργικό διαχωρισμό μεταξύ των λειτουργιών βασικής επεξεργασίας σήματος, σε συνδυασμό με τη βέλτιστη τοποθέτηση του SDN ελεγκτή, λαμβάνοντας επίσης υπόψη τη σταθερότητα του συνολικού συστήματος και τη μείωση των συνολικών λειτουργικών δαπανών. Η ανάλυση επεκτείνεται περαιτέρω με προηγμένα σχήματα βελτιστοποίησης, με σκοπό την προσέγγιση ενός πιο ρεαλιστικού περιβάλλοντος 5G, όπου η ραγδαία αύξηση της κίνησης συνεπάγεται την ανάγκη για μεγαλύτερες δυνατότητες κλιμάκωσης για τη διαχείριση των χωρικών και χρονικών μεταβολών της, καθώς και τερματικών με διαφορετικές απαιτήσεις ποιότητας. Στη συνέχεια μελετούνται τα δίκτυα πυρήνα του 5G. Στα δίκτυα πυρήνα 5G κάθε λειτουργία είναι λογισμικοποιημένη (softwarized) και απομονωμένη, επιτρέποντας την ανάπτυξη της σε υλικό γενικής χρήσης. Επίσης εισάγεται ένας νέος διαχωρισμό μεταξύ των λειτουργιών του επιπέδου ελέγχου και του επιπέδου δεδομένων (Control and User Plane Seperation – CUPS) με βάση την SDN αρχιτεκτονική. Με τον τρόπο αυτό διαχωρίζεται η δικτυακή κίνηση μεταξύ των διαφορετικών 5G οντοτήτων (επίπεδο ελέγχου) και η δικτυακή κίνηση των χρηστών (επίπεδο χρήστη). Κρίσιμο ρόλο στο χειρισμό σημαντικού μέρους του επιπέδου χρήστη στα συστήματα 5G διαδραματίζει η οντότητα «λειτουργία επιπέδου χρήστη» (User Plane Function – UPF). Το UPF είναι υπεύθυνο για την προώθηση της πραγματικής κίνησης χρηστών με πολύ αυστηρές απαιτήσεις απόδοσης. Ανάλογα με τον τύπο της απαιτούμενης υπηρεσίας και την αρχιτεκτονική του δικτύου ραδιοπρόσβασης, οι κόμβοι UPF μπορούν να βρίσκονται είτε πιο κοντά είτε πιο μακριά από αυτό, ανακατευθύνοντας την κυκλοφορία σε διακομιστές κοντά στην άκρη του δικτύου για μείωση του χρόνου καθυστέρησης ή σε κεντρικές εγκαταστάσεις. Ως εκ τούτου, προκύπτει το ερώτημα της επιλογής των βέλτιστων στοιχείων UPF, καθώς η επιλογή ενός μη διαθέσιμου υπολογιστικού πόρου UPF μπορεί να οδηγήσει σε μπλοκάρισμα και καθυστερήσεις της υπηρεσίας. Για την αντιμετώπιση αυτού του ζητήματος, προτείνουμε ένα μοντέλο ειδικά σχεδιασμένο για δυναμική επιλογή βέλτιστων στοιχείων UPF με στόχο την ελαχιστοποίηση της συνολικής καθυστέρησης της υπηρεσίας. Αναπτύσσουμε συναρτήσεις κόστους για το μοντέλο χρησιμοποιώντας εργαστηριακές μετρήσεις που ελήφθησαν από μια πλατφόρμα 5G ανοιχτού κώδικα που φιλοξενείται σε περιβάλλον νέφους οπτικού κέντρου δεδομένων. Με το προτεινόμενο μοντέλο, μπορούμε να επιλέξουμε δυναμικά το καταλληλότερο στοιχείο UPF για τη χρήση υπολογιστικών πόρων, μειώνοντας τη καθυστέρηση εξυπηρέτησης. Επεκτείνοντας την έννοια αποσύνθεσης των δικτυακών πόρων, η ανάλυση εστιάζει στα συστήματα 6G, τα οποία αναμένεται να υποστηρίξουν ένα ευρύ φάσμα υπηρεσιών μέσω μιας κοινής υποδομής που διευκολύνεται από τον τεμαχισμό δικτύου (network slicing). Τα συστήματα 6G προβλέπεται να λειτουργούν με αποκεντρωμένο τρόπο, που επιτρέπει στις εφαρμογές να παρεμβαίνουν άμεσα στις διαδικασίες ελέγχου για την πιο αποτελεσματική διασφάλιση της ποιότητας εμπειρίας (Quality of Experience – QoE) των τελικών χρηστών. Αυτό πραγματοποιείται μέσω της χρήσης της οντότητας «λειτουργία εφαρμογής» (Application Function – AF), η οποία διαχειρίζεται την εφαρμογή που εκτελείται στο τερματικό χρήστη (User Equipment – UE) και στο διακομιστή (Application Server - AS) που υποστηρίζει την υπηρεσία. Το AF διαδραματίζει κρίσιμο ρόλο στην παροχή υπηρεσιών υψηλού QoE, καθώς ενημερώνεται από την εφαρμογή και μπορεί να επηρεάσει τις αποφάσεις δρομολόγησης της κυκλοφορίας. Ωστόσο, η ανεξέλεγκτη λειτουργία του AF μπορεί να οδηγήσει σε αστάθεια στο σύστημα. Για την αντιμετώπιση αυτού του ζητήματος σχεδιάζουμε, εφαρμόζουμε και αξιολογούμε θεωρητικά και πειραματικά ένα πλήρως κατανεμημένο πλαίσιο λήψης αποφάσεων για την εκχώρηση ροών (flow assignment) στα συστήματα 6G. Το πλαίσιο αυτό αποδεικνύεται ότι, υπό συγκεκριμένες συνθήκες, συγκλίνει σε ένα σταθερό σημείο που παρέχει τη βέλτιστη ισορροπία μεταξύ QoE και αποδοτικότητας κόστους. Οι συναρτήσεις κόστους που χρησιμοποιούνται ενσωματώνουν τόσο το κόστος δικτύου όσο και το υπολογιστικό κόστος, τα οποία προκύπτουν ρεαλιστικά μέσω μιας λεπτομερούς διαδικασίας που διεξάγεται σε μια λειτουργική 5G πλατφόρμα. Αυτή η διαδικασία επιτρέπει τη μοντελοποίηση της απόδοσης του συστήματος και των απαιτήσεων σε διαφορετικά σενάρια λειτουργίας, τα οποία μπορούν να βοηθήσουν στη βελτιστοποιημένη διαχείριση του κύκλου ζωής των παρεχόμενων υπηρεσιών. Τέλος, η μελέτη επικεντρώνεται στην πραγματική ανάπτυξη μιας υποδομής 5G που υποστηρίζει τον τεμαχισμό του δικτύου κατά παραγγελία από πολλαπλούς χρήστες. Ο τεμαχισμός του δικτύου επιτρέπει τον διαχωρισμό της φυσικής υποδομής δικτύου σε πολλαπλές λογικές υποδομές που μπορούν να υποστηρίξουν διαφορετικές κατηγορίες υπηρεσιών. Ένα τμήμα δικτύου (slice) έχει τους δικούς του αποκλειστικούς πόρους από το δίκτυο πρόσβασης, μεταφοράς, και πυρήνα, καθώς και στοιχεία από διάφορους τομείς κάτω από τους ίδιους ή διαφορετικούς διαχειριστές. Η κοινή χρήση της υποκείμενης φυσικής υποδομής από τα τμήματα δικτύου περιλαμβάνει την ανάπτυξη κατάλληλων διεπαφών που μπορούν να χρησιμοποιηθούν για την σύνδεση των διαφορετικών δικτυακών στοιχείων, καθώς και τη δημιουργία κατάλληλων περιγραφών (descriptors) για την εικονοποίηση των 5G λειτουργιών (Εικονικές Δικτυακές Λειτουργίες 5G - 5G Virtual Network Functions – VNFs). Η συλλογή και ο κατάλληλος συνδυασμός πολλαπλών VNF δίνει μια 5G υπηρεσία δικτύου (Network Service - NS) από άκρη σε άκρη (End to End - E2E). Μέσω μιας πλατφόρμας διαχείρισης και ενορχήστρωσης (Management and Orchestration Platform - MANO), μπορούμε να συνδυάσουμε αυτές τις υπηρεσίες δικτύου για να δημιουργήσουμε και να διαχειριστούμε ένα 5G τμήμα δικτύου. Για να επιτευχθεί αυτό, στη μελέτη αυτή χρησιμοποιείται ένας ενορχηστρωτής που ονομάζεται Open Source MANO (OSM), ο οποίος είναι συμβατός με το πρότυπο της Εικονικοποίησης Λειτουργιών Δικτύου (NFV). Αναπτύσσονται descriptors τόσο για τις λειτουργίες του επιπέδου ελέγχου του 5G, όσο και για το επίπεδο χρήστη. Συνδυάζοντας αυτούς τους descriptors, επιτυγχάνεται η δυναμική υλοποίηση πολλαπλών τμημάτων δικτύου πάνω σε μια 5G πλατφόρμα που υποστηρίζει πολλαπλούς χρήστες και φιλοξενείται σε μια υποδομή κέντρου δεδομένων. Χρησιμοποιώντας τα δημιουργημένα VNF, μπορούμε να εκτελέσουμε το δίκτυο πυρήνα με το πάτημα ενός κουμπιού και να παρέχουμε πολλαπλά τμήματα δικτύου με διαφορετικά χαρακτηριστικά.The fifth generation (5G) of wireless and mobile communications is expected to have a far-reaching impact on society and businesses beyond the information and communications technology (ICT) sector. 5G is aligned with the 4th industrial evolution, blurring the lines between the physical, digital, and biological spheres. A common design is necessary to accommodate all service types based on energy and cost efficiency. To address this, this PhD thesis adopts the idea of a universal 5G platform that integrates a variety of networking technologies (wireless and wired), and aims to develop mathematical tools, algorithms and protocols for the energy and operational optimization of this infrastructure and the services it provides. This infrastructure interconnects computing, storage and network components that are placed at different locations, using the concepts of programmable hardware (hardware-HW) and network software (network softwarisation). In this way, it enables the provision of any service by flexibly and efficiently mixing and matching network, computing and storage resources. The thesis targeted four distinct contributions. All proposed contributions are implemented and investigated experimentally in a 5G open-source lab testbed. The first contribution focused on optimal function and resource allocation adopting the innovative 5G RAN architecture, that splits flexibly the baseband processing function chain between Remote, Distributed and Central Units. This enables access to shared resources provided by micro or large-scale remote data centers, without requiring resource ownership. To support this architecture, networks adopt the Software Defined Networking (SDN) approach, where the control plane is decoupled from the data plane and the associated network devices and is centralized in a software-based controller. In this context, the goal of the proposed approach was to develop effective optimization techniques that identify the optimal functional split, along with the optimal location and size of the SDN controllers. The second contribution concentrated on solving the User Plane Function (UPF) selection problem in 5G core networks. According to the SDN paradigm 5G core control plane functions manage the network, while UPFs are responsible for handling users’ data. Depending on the 5G RAN deployment option and the nature of the service, UPF nodes can be placed closer to the network edge, directing traffic to the Multi-access Edge Computing (MEC) servers hence reducing latency, or be placed deeper into the network directing traffic to central cloud facilities. In this context, a framework that selects the optimal UPF nodes to handle user’s traffic minimizing total service delay has been proposed. The third contribution pertained to service provisioning in upcoming telecommunication systems. 6G systems require novel architectural Quality of Experience (QoE) models and resource allocation strategies that can differentiate between data streams originating from the same or multiple User Equipment (UEs), respond to changes in the underlying physical infrastructure, and scale with the number of connected devices. Currently, centralized management and network orchestration (MANO) platforms provide this functionality, but they suffer scalability issues. Therefore, future systems are anticipated to operate in a distributed manner, allowing applications to directly intervene in relevant control processes to ensure the required QoE. The proposed approach focused on developing a flow assignment model that supports applications running on UEs. The final contribution of this thesis focused on the deployment of a 5G infrastructure that supports multi-tenant network slicing on demand. Sharing of the underlying physical infrastructure was achieved through the development of suitable interfaces for integrating different network components and the creation of appropriate descriptors for virtual 5G network functions (VNFs). By collecting and combining multiple VNFs, an end-to-end 5G Network Service (NS) can be obtained. Using a MANO platform, these NSs can be combined to instantiate and manage a 5G network slice

    Quantum Internet

    Get PDF
    During my TFG, I investigated the current state of quantum technologies, with a focus on quantum communications and the Quantum Internet. The initial phase includes analyzing the fundamental characteristics of quantum communications, which involves the use of qubits. I mentioned the most advanced deployments of quantum networks to date (QKD networks and entanglement networks). My final study case was based on exploring the potencial of entanglement to improve classical communication capacity. The advantages of Entanglement-Assisted (EA) capacity become evident. Unfortunately, these advantages are significantly reduced when considering an imperfect entanglement distribution. My case study aimed to determine specific ranges and conditions for beneficial classical capacity.Durant el meu TFG, vaig investigar sobre l'estat actual de les tecnologies quàntiques, especialmente en les comunicacions quàntiques i la Internet quàntica. La fase inicial inclou l'anàlisi de les característiques fonamentals de les comunicacions quàntiques, que implica l'ús de qubits. He esmentat els desplegaments més avançats de xarxes quàntiques fins ara (les xarxes QKD i les xarxes d'entrellaçament). El meu cas d'estudi final es va basar en explorar el potencial de l'entrellaçament per millorar la capacitat de comunicació clàssica. Els avantatges de la capacitat assistida per entrellaçament (EA) son evidents. Malauradament, aquests avantatges es redueixen significativament quan es considera una distribució d'entrellaçament imperfecta. El meu estudi de cas tenia com a objectiu determinar els rangs i condicions específics para una capacitat clàssica beneficios

    Novel Architectures for Offloading and Accelerating Computations in Artificial Intelligence and Big Data

    Get PDF
    Due to the end of Moore's Law and Dennard Scaling, performance gains in general-purpose architectures have significantly slowed in recent years. While raising the number of cores has been a viable approach for further performance increases, Amdahl's Law and its implications on parallelization also limit further performance gains. Consequently, research has shifted towards different approaches, including domain-specific custom architectures tailored to specific workloads. This has led to a new golden age for computer architecture, as noted in the Turing Award Lecture by Hennessy and Patterson, which has spawned several new architectures and architectural advances specifically targeted at highly current workloads, including Machine Learning. This thesis introduces a hierarchy of architectural improvements ranging from minor incremental changes, such as High-Bandwidth Memory, to more complex architectural extensions that offload workloads from the general-purpose CPU towards more specialized accelerators. Finally, we introduce novel architectural paradigms, namely Near-Data or In-Network Processing, as the most complex architectural improvements. This cumulative dissertation then investigates several architectural improvements to accelerate Sum-Product Networks, a novel Machine Learning approach from the class of Probabilistic Graphical Models. Furthermore, we use these improvements as case studies to discuss the impact of novel architectures, showing that minor and major architectural changes can significantly increase performance in Machine Learning applications. In addition, this thesis presents recent works on Near-Data Processing, which introduces Smart Storage Devices as a novel architectural paradigm that is especially interesting in the context of Big Data. We discuss how Near-Data Processing can be applied to improve performance in different database settings by offloading database operations to smart storage devices. Offloading data-reductive operations, such as selections, reduces the amount of data transferred, thus improving performance and alleviating bandwidth-related bottlenecks. Using Near-Data Processing as a use-case, we also discuss how Machine Learning approaches, like Sum-Product Networks, can improve novel architectures. Specifically, we introduce an approach for offloading Cardinality Estimation using Sum-Product Networks that could enable more intelligent decision-making in smart storage devices. Overall, we show that Machine Learning can benefit from developing novel architectures while also showing that Machine Learning can be applied to improve the applications of novel architectures

    Serverless middlewares to integrate heterogeneous and distributed services in cloud continuum environments

    Get PDF
    The application of modern ICT technologies is radically changing many fields pushing toward more open and dynamic value chains fostering the cooperation and integration of many connected partners, sensors, and devices. As a valuable example, the emerging Smart Tourism field derived from the application of ICT to Tourism so to create richer and more integrated experiences, making them more accessible and sustainable. From a technological viewpoint, a recurring challenge in these decentralized environments is the integration of heterogeneous services and data spanning multiple administrative domains, each possibly applying different security/privacy policies, device and process control mechanisms, service access, and provisioning schemes, etc. The distribution and heterogeneity of those sources exacerbate the complexity in the development of integrating solutions with consequent high effort and costs for partners seeking them. Taking a step towards addressing these issues, we propose APERTO, a decentralized and distributed architecture that aims at facilitating the blending of data and services. At its core, APERTO relies on APERTO FaaS, a Serverless platform allowing fast prototyping of the business logic, lowering the barrier of entry and development costs to newcomers, (zero) fine-grained scaling of resources servicing end-users, and reduced management overhead. APERTO FaaS infrastructure is based on asynchronous and transparent communications between the components of the architecture, allowing the development of optimized solutions that exploit the peculiarities of distributed and heterogeneous environments. In particular, APERTO addresses the provisioning of scalable and cost-efficient mechanisms targeting: i) function composition allowing the definition of complex workloads from simple, ready-to-use functions, enabling smarter management of complex tasks and improved multiplexing capabilities; ii) the creation of end-to-end differentiated QoS slices minimizing interfaces among application/service running on a shared infrastructure; i) an abstraction providing uniform and optimized access to heterogeneous data sources, iv) a decentralized approach for the verification of access rights to resources

    Demystifying the Performance of Data Transfers in High-Performance Research Networks

    Full text link
    High-speed research networks are built to meet the ever-increasing needs of data-intensive distributed workflows. However, data transfers in these networks often fail to attain the promised transfer rates for several reasons, including I/O and network interference, server misconfigurations, and network anomalies. Although understanding the root causes of performance issues is critical to mitigating them and increasing the utilization of expensive network infrastructures, there is currently no available mechanism to monitor data transfers in these networks. In this paper, we present a scalable, end-to-end monitoring framework to gather and store key performance metrics for file transfers to shed light on the performance of transfers. The evaluation results show that the proposed framework can monitor up to 400 transfers per host and more than 40, 000 transfers in total while collecting performance statistics at one-second precision. We also introduce a heuristic method to automatically process the gathered performance metrics and identify the root causes of performance anomalies with an F-score of 87 - 98%.Comment: 11 pages, 7 figures, 6 table

    Izaña Atmospheric Research Center. Activity Report 2019-2020

    Get PDF
    Editors: Emilio Cuevas, Celia Milford and Oksana Tarasova.[EN]The Izaña Atmospheric Research Center (IARC), which is part of the State Meteorological Agency of Spain (AEMET), is a site of excellence in atmospheric science. It manages four observatories in Tenerife including the high altitude Izaña Atmospheric Observatory. The Izaña Atmospheric Observatory was inaugurated in 1916 and since that date has carried out uninterrupted meteorological and climatological observations, contributing towards a unique 100-year record in 2016. This reports are a summary of the many activities at the Izaña Atmospheric Research Center to the broader community. The combination of operational activities, research and development in state-of-the-art measurement techniques, calibration and validation and international cooperation encompass the vision of WMO to provide world leadership in expertise and international cooperation in weather, climate, hydrology and related environmental issues.[ES]El Centro de Investigación Atmosférica de Izaña (CIAI), que forma parte de la Agencia Estatal de Meteorología de España (AEMET), representa un centro de excelencia en ciencias atmosféricas. Gestiona cuatro observatorios en Tenerife, incluido el Observatorio de Izaña de gran altitud, inaugurado en 1916 y que desde entonces ha realizado observaciones meteorológicas y climatológicas ininterrumpidas y se ha convertido en una estación centenaria de la OMM. Estos informes resumen las múltiples actividades llevadas a cabo por el Centro de Investigación Atmosférica de Izaña. El liderazgo del Centro en materia de investigación y desarrollo con respecto a las técnicas de medición, calibración y validación de última generación, así como la cooperación internacional, le han otorgado una reputación sobresaliente en lo que se refiere al tiempo, el clima, la hidrología y otros temas ambientales afines
    corecore