2,505 research outputs found

    Automotive Intelligence Embedded in Electric Connected Autonomous and Shared Vehicles Technology for Sustainable Green Mobility

    Get PDF
    The automotive sector digitalization accelerates the technology convergence of perception, computing processing, connectivity, propulsion, and data fusion for electric connected autonomous and shared (ECAS) vehicles. This brings cutting-edge computing paradigms with embedded cognitive capabilities into vehicle domains and data infrastructure to provide holistic intrinsic and extrinsic intelligence for new mobility applications. Digital technologies are a significant enabler in achieving the sustainability goals of the green transformation of the mobility and transportation sectors. Innovation occurs predominantly in ECAS vehicles’ architecture, operations, intelligent functions, and automotive digital infrastructure. The traditional ownership model is moving toward multimodal and shared mobility services. The ECAS vehicle’s technology allows for the development of virtual automotive functions that run on shared hardware platforms with data unlocking value, and for introducing new, shared computing-based automotive features. Facilitating vehicle automation, vehicle electrification, vehicle-to-everything (V2X) communication is accomplished by the convergence of artificial intelligence (AI), cellular/wireless connectivity, edge computing, the Internet of things (IoT), the Internet of intelligent things (IoIT), digital twins (DTs), virtual/augmented reality (VR/AR) and distributed ledger technologies (DLTs). Vehicles become more intelligent, connected, functioning as edge micro servers on wheels, powered by sensors/actuators, hardware (HW), software (SW) and smart virtual functions that are integrated into the digital infrastructure. Electrification, automation, connectivity, digitalization, decarbonization, decentralization, and standardization are the main drivers that unlock intelligent vehicles' potential for sustainable green mobility applications. ECAS vehicles act as autonomous agents using swarm intelligence to communicate and exchange information, either directly or indirectly, with each other and the infrastructure, accessing independent services such as energy, high-definition maps, routes, infrastructure information, traffic lights, tolls, parking (micropayments), and finding emergent/intelligent solutions. The article gives an overview of the advances in AI technologies and applications to realize intelligent functions and optimize vehicle performance, control, and decision-making for future ECAS vehicles to support the acceleration of deployment in various mobility scenarios. ECAS vehicles, systems, sub-systems, and components are subjected to stringent regulatory frameworks, which set rigorous requirements for autonomous vehicles. An in-depth assessment of existing standards, regulations, and laws, including a thorough gap analysis, is required. Global guidelines must be provided on how to fulfill the requirements. ECAS vehicle technology trustworthiness, including AI-based HW/SW and algorithms, is necessary for developing ECAS systems across the entire automotive ecosystem. The safety and transparency of AI-based technology and the explainability of the purpose, use, benefits, and limitations of AI systems are critical for fulfilling trustworthiness requirements. The article presents ECAS vehicles’ evolution toward domain controller, zonal vehicle, and federated vehicle/edge/cloud-centric based on distributed intelligence in the vehicle and infrastructure level architectures and the role of AI techniques and methods to implement the different autonomous driving and optimization functions for sustainable green mobility.publishedVersio

    Designing an Energy Efficient Network Using Integration of KSOM, ANN and Data Fusion Techniques

    Get PDF
    Energy in a wireless sensor network (WSN) is rendered as the major constraint that affects the overall feasibility and performance of a network. With the dynamic and demanding requirements of diverse applications, the need for an energy efficient network persists. Therefore, this paper proposes a mechanism for optimizing the energy consumption in WSN through the integration of artificial neural networks (ANN) and Kohonen self-organizing map (KSOM) techniques. The clusters are formed and re-located after iteration for effective distribution of energy and reduction of energy depletion at individual nodes. Furthermore, back propagation algorithm is used as a supervised learning method for optimizing the approach and reducing the loss function. The simulation results show the effectiveness of the proposed energy efficient network

    Network Flow Optimization Using Reinforcement Learning

    Get PDF

    A cognitive QoS management framework for WLANs

    Get PDF
    Due to the precipitous growth of wireless networks and the paucity of spectrum, more interference is imposed to the wireless terminals which constraints their performance. In order to preserve such performance degradation, this paper proposes a framework which uses cognitive radio techniques for quality of service (QoS) management of wireless local area networks (LANs). The framework incorporates radio environment maps as input to a cognitive decision engine that steers the network to optimize its QoS parameters such as throughput. A novel experimentally verified heuristic physical model is developed to predict and optimize the throughput of wireless terminals. The framework was applied to realistic stationary and time-variant interference scenarios where an average throughput gain of 344% was achieved in the stationary interference scenario and 70% to 183% was gained in the time-variant interference scenario
    • …
    corecore