281 research outputs found

    Integrated Approach for Diversion Route Performance Management during Incidents

    Get PDF
    Non-recurrent congestion is one of the critical sources of congestion on the highway. In particular, traffic incidents create congestion in unexpected times and places that travelers do not prepare for. During incidents on freeways, route diversion has been proven to be a useful tactic to mitigate non-recurrent congestion. However, the capacity constraints created by the signals on the alternative routes put limits on the diversion process since the typical time-of-day signal control cannot handle the sudden increase in the traffic on the arterials due to diversion. Thus, there is a need for proactive strategies for the management of the diversion routes performance and for coordinated freeway and arterial (CFA) operation during incidents on the freeway. Proactive strategies provide better opportunities for both the agency and the traveler to make and implement decisions to improve performance. This dissertation develops a methodology for the performance management of diversion routes through integrating freeway and arterials operation during incidents on the freeway. The methodology includes the identification of potential diversion routes for freeway incidents and the generation and implementation of special signal plans under different incident and traffic conditions. The study utilizes machine learning, data analytics, multi-resolution modeling, and multi-objective optimization for this purpose. A data analytic approach based on the long short term memory (LSTM) deep neural network method is used to predict the utilized alternative routes dynamically using incident attributes and traffic status on the freeway and travel time on both the freeway and alternative routes during the incident. Then, a combination of clustering analysis, multi- resolution modeling (MRM), and multi-objective optimization techniques are used to develop and activate special signal plans on the identified alternative routes. The developed methods use data from different sources, including connected vehicle (CV) data and high- resolution controller (HRC) data for congestion patterns identification at the critical intersections on the alternative routes and signal plans generation. The results indicate that implementing signal timing plans to better accommodate the diverted traffic can improve the performance of the diverted traffic without significantly deteriorating other movements\u27 performance at the intersection. The findings show the importance of using data from emerging sources in developing plans to improve the performance of the diversion routes and ensure CFA operation with higher effectiveness

    Multi-Sensor Data Fusion for Travel Time Estimation

    Get PDF
    The importance of travel time estimation has increased due to the central role it plays in a number of emerging intelligent transport systems and services including Advanced Traveller Information Systems (ATIS), Urban Traffic Control (UTC), Dynamic Route Guidance (DRG), Active Traffic Management (ATM), and network performance monitoring. Along with the emerging of new sensor technologies, the much greater volumes of near real time data provided by these new sensor systems create opportunities for significant improvement in travel time estimation. Data fusion as a recent technique leads to a promising solution to this problem. This thesis presents the development and testing of new methods of multi-sensor data fusion for the accurate, reliable and robust estimation of travel time. This thesis reviews the state-of-art data fusion approaches and its application in transport domain, and discusses both of opportunities and challenging of applying data fusion into travel time estimation in a heterogeneous real time data environment. For a particular England highway scenario where ILDs and ANPR data are largely available, a simple but practical fusion method is proposed to estimate the travel time based on a novel relationship between space-mean-speed and time-mean-speed. In developing a general fusion framework which is able to fuse ILDs, GPS and ANPR data, the Kalman filter is identified as the most appropriate fundamental fusion technique upon which to construct the required framework. This is based both on the ability of the Kalman filter to flexibly accommodate well-established traffic flow models which describe the internal physical relation between the observed variables and objective estimates and on its ability to integrate and propagate in a consistent fashion the uncertainty associated with different data sources. Although the standard linear Kalman filter has been used for multi-sensor travel time estimation in the previous research, the novelty of this research is to develop a nonlinear Kalman filter (EKF and UKF) fusion framework which improves the estimation performance over those methods based on the linear Kalman filter. This proposed framework is validated by both of simulation and real-world scenarios, and is demonstrated the effectiveness of estimating travel time by fusing multi-sensor sources

    Methodologies for Estimating Traffic Flow on Freeways Using Probe Vehicle Trajectory Data

    Get PDF
    Probe vehicle data are increasingly becoming the primary source of traffic data. As probe vehicle data become more widespread, it is imperative that methods are developed so that traffic state estimators such as flow, density, and speed can be derived from such data. In this dissertation three different methodologies are proposed for predicting traffic flow or volume on a freeway. All of the proposed methodologies exploit several different traffic flow theories in conjunction with probe vehicle data to predict traffic flow. The first methodology takes advantage of the fundamental diagram or speed-flow relationship. The relationship states that flow can be estimated when speed is known. In this case, flow is traffic volume and speed comes from probe vehicles. Flow is predicted for four different models of fundamental diagrams and is analyzed at different time aggregation intervals. Results show that of the four fundamental diagrams, Van Aerde’s Model is the best performing model with the lowest average percent error. It is also observed that flow prediction is more accurate during low speed (congestion) compared to high speed (free-flow) conditions. The second methodology exploits the shockwave theory, which pertains to the propagation of a change (discontinuity) in traffic flow. From probe vehicle trajectories, shockwave is estimated as the boundary between free-flow and congested regimes of traffic flow. After clustering the traffic regimes into free-flow and congested periods, the traffic flow during congestion is estimated using the Northwestern congested-regime fundamental diagram. From this estimation, the flow during free-flow is then predicted. Analyses show that the percent error of the predicted flow during free-flow ranges from -9 to 1%. The third methodology is the car-following approach which relies on the spacing or distance between a leader and follower which can be directly measured from the trajectories. Based on a set of known probability distributions, the position of the follower vehicle with respect to the lead vehicle is estimated given that the spacing between the two random probe vehicles is known. A framework is developed to automatically process probe trajectories to extract relevant probe data under stop-and-go traffic conditions. The model is tested based on NGSIM datasets. The results show that when vehicle spacing is small the prediction of follower position is very accurate. As spacing increases the error in predicted follower position also increases. Though there exists some estimation error, all three approaches can reasonably predict flow for freeways using probe vehicle data

    2nd Symposium on Management of Future motorway and urban Traffic Systems (MFTS 2018): Booklet of abstracts: Ispra, 11-12 June 2018

    Get PDF
    The Symposium focuses on future traffic management systems, covering the subjects of traffic control, estimation, and modelling of motorway and urban networks, with particular emphasis on the presence of advanced vehicle communication and automation technologies. As connectivity and automation are being progressively introduced in our transport and mobility systems, there is indeed a growing need to understand the implications and opportunities for an enhanced traffic management as well as to identify innovative ways and tools to optimise traffic efficiency. In particular the debate on centralised versus decentralised traffic management in the presence of connected and automated vehicles has started attracting the attention of the research community. In this context, the Symposium provides a remarkable opportunity to share novel ideas and discuss future research directions.JRC.C.4-Sustainable Transpor

    Characterizing Queue Dynamics at Signalized Intersections From Probe Vehicle Data

    Get PDF
    Probe vehicles instrumented with location-tracking technologies have become increasingly popular for collecting traffic flow data. While probe vehicle data have been used for estimating speeds and travel times, there has been limited research on predicting queuing dynamics from such data. In this research, a methodology is developed for identifying the travel lanes of the GPS-instrumented vehicles when they are standing in a queue at signalized intersections with multilane approaches. In particular, the proposed methodology exploits the unequal queue lengths across the lanes to infer the specific lanes the probe vehicles occupy. Various supervised and unsupervised clustering methods were developed and tested on data generated from a microsimulation model. The generated data included probe vehicle positions and shockwave speeds predicated on their trajectories. Among the tested methods, a Bayesian approach that employs probability density functions estimated by bivariate statistical mixture models was found to be effective in identifying the lanes. The results from lane identification were then used to predict queue lengths for each travel lane. Subsequently, the trajectories for non-probe vehicles within the queue were predicted. As a potential application, fuel consumption for all vehicles in the queue is estimated and evaluated for accuracy. The accuracies of the models for lane identification. queue length prediction, and fuel consumption estimation were evaluated at varying levels of demand and probe-vehicle market penetrations. In general, as the market penetration increases, the accuracy improves. For example. when the market penetration rate is about 40%, the queue length estimation accuracy reaches 90%. The dissertation includes various numerical experiments and the performance of the models under numerous scenarios

    Probabilistic approaches to the design of wireless ad hoc and sensor networks

    Get PDF
    The emerging wireless technologies has made ubiquitous wireless access a reality and enabled wireless systems to support a large variety of applications. Since the wireless self-configuring networks do not require infrastructure and promise greater flexibility and better coverage, wireless ad hoc and sensor networks have been under intensive research. It is believed that wireless ad hoc and sensor networks can become as important as the Internet. Just as the Internet allows access to digital information anywhere, ad hoc and sensor networks will provide remote interaction with the physical world. Dynamics of the object distribution is one of the most important features of the wireless ad hoc and sensor networks. This dissertation deals with several interesting estimation and optimization problems on the dynamical features of ad hoc and sensor networks. Many demands in application, such as reliability, power efficiency and sensor deployment, of wireless ad hoc and sensor network can be improved by mobility estimation and/or prediction. In this dissertation, we study several random mobility models, present a mobility prediction methodology, which relies on the analysis of the moving patterns of the mobile objects. Through estimating the future movement of objects and analyzing the tradeoff between the estimation cost and the quality of reliability, the optimization of tracking interval for sensor networks is presented. Based on the observation on the location and movement of objects, an optimal sensor placement algorithm is proposed by adaptively learn the dynamical object distribution. Moreover, dynamical boundary of mass objects monitored in a sensor network can be estimated based on the unsupervised learning of the distribution density of objects. In order to provide an accurate estimation of mobile objects, we first study several popular mobility models. Based on these models, we present some mobility prediction algorithms accordingly, which are capable of predicting the moving trajectory of objects in the future. In wireless self-configuring networks, an accurate estimation algorithm allows for improving the link reliability, power efficiency, reducing the traffic delay and optimizing the sensor deployment. The effects of estimation accuracy on the reliability and the power consumption have been studied and analyzed. A new methodology is proposed to optimize the reliability and power efficiency by balancing the trade-off between the quality of performance and estimation cost. By estimating and predicting the mass objects\u27 location and movement, the proposed sensor placement algorithm demonstrates a siguificant improvement on the detection of mass objects with nearmaximal detection accuracy. Quantitative analysis on the effects of mobility estimation and prediction on the accuracy of detection by sensor networks can be conducted with recursive EM algorithms. The future work includes the deployment of the proposed concepts and algorithms into real-world ad hoc and sensor networks
    • …
    corecore