766 research outputs found

    Real-Time Facial Emotion Recognition Using Fast R-CNN

    Get PDF
    In computer vision and image processing, object detection algorithms are used to detect semantic objects of certain classes of images and videos. Object detector algorithms use deep learning networks to classify detected regions. Unprecedented advancements in Convolutional Neural Networks (CNN) have led to new possibilities and implementations for object detectors. An object detector which uses a deep learning algorithm detect objects through proposed regions, and then classifies the region using a CNN. Object detectors are computationally efficient unlike a typical CNN which is computationally complex and expensive. Object detectors are widely used for face detection, recognition, and object tracking. In this thesis, deep learning based object detection algorithms are implemented to classify facially expressed emotions in real-time captured through a webcam. A typical CNN would classify images without specifying regions within an image, which could be considered as a limitation towards better understanding the network performance which depend on different training options. It would also be more difficult to verify whether a network have converged and is able to generalize, which is the ability to classify unseen data, data which was not part of the training set. Fast Region-based Convolutional Neural Network, an object detection algorithm; used to detect facially expressed emotion in real-time by classifying proposed regions. The Fast R-CNN is trained using a high-quality video database, consisting of 24 actors, facially expressing eight different emotions, obtained from images which were processed from 60 videos per actor. An object detector’s performance is measured using various metrics. Regardless of how an object detector performed with respect to average precision or miss rate, doing well on such metrics would not necessarily mean that the network is correctly classifying regions. This may result from the fact that the network model has been over-trained. In our work we showed that object detector algorithm such as Fast R-CNN performed surprisingly well in classifying facially expressed emotions in real-time, performing better than CNN

    ModDrop: adaptive multi-modal gesture recognition

    Full text link
    We present a method for gesture detection and localisation based on multi-scale and multi-modal deep learning. Each visual modality captures spatial information at a particular spatial scale (such as motion of the upper body or a hand), and the whole system operates at three temporal scales. Key to our technique is a training strategy which exploits: i) careful initialization of individual modalities; and ii) gradual fusion involving random dropping of separate channels (dubbed ModDrop) for learning cross-modality correlations while preserving uniqueness of each modality-specific representation. We present experiments on the ChaLearn 2014 Looking at People Challenge gesture recognition track, in which we placed first out of 17 teams. Fusing multiple modalities at several spatial and temporal scales leads to a significant increase in recognition rates, allowing the model to compensate for errors of the individual classifiers as well as noise in the separate channels. Futhermore, the proposed ModDrop training technique ensures robustness of the classifier to missing signals in one or several channels to produce meaningful predictions from any number of available modalities. In addition, we demonstrate the applicability of the proposed fusion scheme to modalities of arbitrary nature by experiments on the same dataset augmented with audio.Comment: 14 pages, 7 figure
    • …
    corecore