17,059 research outputs found

    Active Learning for Dialogue Act Classification

    Get PDF
    Active learning techniques were employed for classification of dialogue acts over two dialogue corpora, the English human-human Switchboard corpus and the Spanish human-machine Dihana corpus. It is shown clearly that active learning improves on a baseline obtained through a passive learning approach to tagging the same data sets. An error reduction of 7% was obtained on Switchboard, while a factor 5 reduction in the amount of labeled data needed for classification was achieved on Dihana. The passive Support Vector Machine learner used as baseline in itself significantly improves the state of the art in dialogue act classification on both corpora. On Switchboard it gives a 31% error reduction compared to the previously best reported result

    Dialogue Act Modeling for Automatic Tagging and Recognition of Conversational Speech

    Get PDF
    We describe a statistical approach for modeling dialogue acts in conversational speech, i.e., speech-act-like units such as Statement, Question, Backchannel, Agreement, Disagreement, and Apology. Our model detects and predicts dialogue acts based on lexical, collocational, and prosodic cues, as well as on the discourse coherence of the dialogue act sequence. The dialogue model is based on treating the discourse structure of a conversation as a hidden Markov model and the individual dialogue acts as observations emanating from the model states. Constraints on the likely sequence of dialogue acts are modeled via a dialogue act n-gram. The statistical dialogue grammar is combined with word n-grams, decision trees, and neural networks modeling the idiosyncratic lexical and prosodic manifestations of each dialogue act. We develop a probabilistic integration of speech recognition with dialogue modeling, to improve both speech recognition and dialogue act classification accuracy. Models are trained and evaluated using a large hand-labeled database of 1,155 conversations from the Switchboard corpus of spontaneous human-to-human telephone speech. We achieved good dialogue act labeling accuracy (65% based on errorful, automatically recognized words and prosody, and 71% based on word transcripts, compared to a chance baseline accuracy of 35% and human accuracy of 84%) and a small reduction in word recognition error.Comment: 35 pages, 5 figures. Changes in copy editing (note title spelling changed

    Learning About Meetings

    Get PDF
    Most people participate in meetings almost every day, multiple times a day. The study of meetings is important, but also challenging, as it requires an understanding of social signals and complex interpersonal dynamics. Our aim this work is to use a data-driven approach to the science of meetings. We provide tentative evidence that: i) it is possible to automatically detect when during the meeting a key decision is taking place, from analyzing only the local dialogue acts, ii) there are common patterns in the way social dialogue acts are interspersed throughout a meeting, iii) at the time key decisions are made, the amount of time left in the meeting can be predicted from the amount of time that has passed, iv) it is often possible to predict whether a proposal during a meeting will be accepted or rejected based entirely on the language (the set of persuasive words) used by the speaker

    Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models

    Full text link
    We investigate the task of building open domain, conversational dialogue systems based on large dialogue corpora using generative models. Generative models produce system responses that are autonomously generated word-by-word, opening up the possibility for realistic, flexible interactions. In support of this goal, we extend the recently proposed hierarchical recurrent encoder-decoder neural network to the dialogue domain, and demonstrate that this model is competitive with state-of-the-art neural language models and back-off n-gram models. We investigate the limitations of this and similar approaches, and show how its performance can be improved by bootstrapping the learning from a larger question-answer pair corpus and from pretrained word embeddings.Comment: 8 pages with references; Published in AAAI 2016 (Special Track on Cognitive Systems
    corecore