3,189 research outputs found

    A Bank of Reconfigurable LQG Controllers for Linear Systems Subjected to Failures

    Get PDF
    An approach for controller reconfiguration is presented. The starting point in the analysis is a sufficiently accurate continuous linear time-invariant (LTI) model of the nominal system. Based on a bank of reconfigurable LQG controllers, each designed for a particular combination of total faults, the reconfiguration consists of two operation modes. In the first mode a switching is invoked towards one of the pre-designed LQG controllers on the basis of the information about only the combination of total faults that is in effect. In the second mode, which is activated in cases of partial and component faults, a dynamic correction procedure is initiated which tries to reconfigure the currently active controller in such a way, that the failed closed-loop system remains stable and its performance is as close as possible to the performance of the closed-loop system with only total faults present in the system. In cases of partial faults the second mode is practically an extension of the modified pseudo-inverse method. In cases of component faults the second mode is based on an LMI optimization problem. The approach is illustrated using a model of a real-life space robot manipulator, in which total, partial and component faults are simulate

    Validation of Ultrahigh Dependability for Software-Based Systems

    Get PDF
    Modern society depends on computers for a number of critical tasks in which failure can have very high costs. As a consequence, high levels of dependability (reliability, safety, etc.) are required from such computers, including their software. Whenever a quantitative approach to risk is adopted, these requirements must be stated in quantitative terms, and a rigorous demonstration of their being attained is necessary. For software used in the most critical roles, such demonstrations are not usually supplied. The fact is that the dependability requirements often lie near the limit of the current state of the art, or beyond, in terms not only of the ability to satisfy them, but also, and more often, of the ability to demonstrate that they are satisfied in the individual operational products (validation). We discuss reasons why such demonstrations cannot usually be provided with the means available: reliability growth models, testing with stable reliability, structural dependability modelling, as well as more informal arguments based on good engineering practice. We state some rigorous arguments about the limits of what can be validated with each of such means. Combining evidence from these different sources would seem to raise the levels that can be validated; yet this improvement is not such as to solve the problem. It appears that engineering practice must take into account the fact that no solution exists, at present, for the validation of ultra-high dependability in systems relying on complex software

    Production of Reliable Flight Crucial Software: Validation Methods Research for Fault Tolerant Avionics and Control Systems Sub-Working Group Meeting

    Get PDF
    The state of the art in the production of crucial software for flight control applications was addressed. The association between reliability metrics and software is considered. Thirteen software development projects are discussed. A short term need for research in the areas of tool development and software fault tolerance was indicated. For the long term, research in format verification or proof methods was recommended. Formal specification and software reliability modeling, were recommended as topics for both short and long term research

    Optimized pulses for the control of uncertain qubits

    Full text link
    Constructing high-fidelity control fields that are robust to control, system, and/or surrounding environment uncertainties is a crucial objective for quantum information processing. Using the two-state Landau-Zener model for illustrative simulations of a controlled qubit, we generate optimal controls for \pi/2- and \pi-pulses, and investigate their inherent robustness to uncertainty in the magnitude of the drift Hamiltonian. Next, we construct a quantum-control protocol to improve system-drift robustness by combining environment-decoupling pulse criteria and optimal control theory for unitary operations. By perturbatively expanding the unitary time-evolution operator for an open quantum system, previous analysis of environment-decoupling control pulses has calculated explicit control-field criteria to suppress environment-induced errors up to (but not including) third order from \pi/2- and \pi-pulses. We systematically integrate this criteria with optimal control theory, incorporating an estimate of the uncertain parameter, to produce improvements in gate fidelity and robustness, demonstrated via a numerical example based on double quantum dot qubits. For the qubit model used in this work, post facto analysis of the resulting controls suggests that realistic control-field fluctuations and noise may contribute just as significantly to gate errors as system and environment fluctuations.Comment: 38 pages, 15 figures, RevTeX 4.1, minor modifications to the previous versio

    Applying Grover's algorithm to AES: quantum resource estimates

    Full text link
    We present quantum circuits to implement an exhaustive key search for the Advanced Encryption Standard (AES) and analyze the quantum resources required to carry out such an attack. We consider the overall circuit size, the number of qubits, and the circuit depth as measures for the cost of the presented quantum algorithms. Throughout, we focus on Clifford+T+T gates as the underlying fault-tolerant logical quantum gate set. In particular, for all three variants of AES (key size 128, 192, and 256 bit) that are standardized in FIPS-PUB 197, we establish precise bounds for the number of qubits and the number of elementary logical quantum gates that are needed to implement Grover's quantum algorithm to extract the key from a small number of AES plaintext-ciphertext pairs.Comment: 13 pages, 3 figures, 5 tables; to appear in: Proceedings of the 7th International Conference on Post-Quantum Cryptography (PQCrypto 2016

    Fast Damage Recovery in Robotics with the T-Resilience Algorithm

    Full text link
    Damage recovery is critical for autonomous robots that need to operate for a long time without assistance. Most current methods are complex and costly because they require anticipating each potential damage in order to have a contingency plan ready. As an alternative, we introduce the T-resilience algorithm, a new algorithm that allows robots to quickly and autonomously discover compensatory behaviors in unanticipated situations. This algorithm equips the robot with a self-model and discovers new behaviors by learning to avoid those that perform differently in the self-model and in reality. Our algorithm thus does not identify the damaged parts but it implicitly searches for efficient behaviors that do not use them. We evaluate the T-Resilience algorithm on a hexapod robot that needs to adapt to leg removal, broken legs and motor failures; we compare it to stochastic local search, policy gradient and the self-modeling algorithm proposed by Bongard et al. The behavior of the robot is assessed on-board thanks to a RGB-D sensor and a SLAM algorithm. Using only 25 tests on the robot and an overall running time of 20 minutes, T-Resilience consistently leads to substantially better results than the other approaches

    Witnessing eigenstates for quantum simulation of Hamiltonian spectra

    Get PDF
    The efficient calculation of Hamiltonian spectra, a problem often intractable on classical machines, can find application in many fields, from physics to chemistry. Here, we introduce the concept of an "eigenstate witness" and through it provide a new quantum approach which combines variational methods and phase estimation to approximate eigenvalues for both ground and excited states. This protocol is experimentally verified on a programmable silicon quantum photonic chip, a mass-manufacturable platform, which embeds entangled state generation, arbitrary controlled-unitary operations, and projective measurements. Both ground and excited states are experimentally found with fidelities >99%, and their eigenvalues are estimated with 32-bits of precision. We also investigate and discuss the scalability of the approach and study its performance through numerical simulations of more complex Hamiltonians. This result shows promising progress towards quantum chemistry on quantum computers.Comment: 9 pages, 4 figures, plus Supplementary Material [New version with minor typos corrected.

    Aircraft parameter identification for application within a fault-tolerant flight control system

    Get PDF
    A parameter identification study was conducted to identify a detailed aircraft mathematical model for application within a fault-tolerant flight control system that aims to detect, identify, and accommodate for sensor and actuator failures. Specifically, a mathematical model was identified under nominal conditions for two aircraft platforms, and a model was developed for one platform under actuator failure conditions. These models are to be used in flight control law design and to account for actuator failures on the primary control surfaces for one of the research platforms. In order to accurately model the aircraft behavior following a control surface failure, the effects of an individual surface on the aircraft dynamics was estimated. Since an individual control surface deflection---for example in the event of a locked actuator---causes a coupling between the longitudinal and lateral-directional dynamics, additional terms were identified in the state space and stability and control derivative mathematical models. These models were derived from measured flight data acquired from pilot and automated computer-injected maneuvers under both nominal and failure conditions. From this analysis, the stability and control derivatives were extracted to determine the aerodynamic forces and moments on each aircraft. These aerodynamics were next introduced into a simulation environment to validate the accuracy of the identified mathematical models. A Data Compendium (DATCOM) -- based analysis was conducted in order to provide a means of comparison of the models obtained through the parameter identification study and to provide constraints on parameter optimization. Finally, a confidence interval analysis was conducted to determine the reliability of the estimated values. Several simulation studies were conducted to validate the accuracy of the models for each research platform, focusing on both nominal and primary control surface failure conditions where applicable. The model outputs were compared to the measured flight data from the two respective research platforms to validate the accuracy of the estimated parameters
    corecore