54 research outputs found

    DYNAMIC RESOURCE ALLOCATION FOR MULTIUSER VIDEO STREAMING

    Get PDF
    With the advancement of video compression technology and wide deployment of wired/wireless networks, there is an increasing demand of multiuser video communication services. A multiuser video transmission system should consider not only the reconstructed video quality in the individual-user level but also the service objectives among all users on the network level. There are many design challenges to support multiuser video communication services, such as fading channels, limited radio resources of wireless networks, heterogeneity of video content complexity, delay and decoding dependency constraints of video bitstreams, and mixed integer optimization. To overcome these challenges, a general strategy is to dynamically allocate resources according to the changing environments and requirements, so as to improve the overall system performance and ensure quality of service (QoS) for each user. In this dissertation, we address the aforementioned design challenges from a resource-allocation point of view and two aspects of system and algorithm designs, namely, a cross-layer design that jointly optimizes resource utilization from physical layer to application layer, and multiuser diversity that explores the source and channel heterogeneity among different users. We also address the impacts on systems caused by dynamic environment along time domain and consider the time-heterogeneity of video sources and time-varying characteristics of channel conditions. To achieve the desired service objectives, a general resource allocation framework is formulated in terms of constrained optimization problems to dynamically allocate resources and control the quality of multiple video bitstreams. Based on the design methodology of multiuser cross-layer optimization, we propose several systems to efficiently transmit multiple video streams, encoded by current and emerging video codecs, over major types of wireless networks such as 3G cellular system, Wireless Local Area Network, 4G cellular system, and future Wireless Metropolitan Area Networks. Owing to the integer nature of some system parameters, the formulated optimization problems are often integer or mixed integer programming problem and involve high computation to search the optimal solutions. Fast algorithms are proposed to provide real-time services. We demonstrate the advantages of dynamic and joint resource allocation for multiple video sources compared to static strategy. We also show the improvement of exploring diversity on frequency, time, and transmission path, and the benefits from multiuser cross-layer optimization

    ENSURE: A Time Sensitive Transport Protocol to Achieve Reliability Over Wireless in Petrochemical Plants

    Get PDF
    As society becomes more reliant on the resources extracted in petroleum refinement the production demand for petrochemical plants increases. A key element is producing efficiently while maintaining safety through constant monitoring of equipment feedback. Currently, temperature and flow sensors are deployed at various points of production and 10/100 Ethernet cable is installed to connect them to a master control unit. This comes at a great monetary cost, not only at the time of implementation but also when repairs are required. The capability to provide plant wide wireless networks would both decrease investment cost and downtime needed for repairs. However, the current state of wireless networks does not provide any guarantee of reliability, which is critical to the industry. When factoring in the need for real-time information, network reliability further decreases. This work presents the design and development of a series of transport layer protocols (coined ENSURE) to provide time-sensitive reliability. More specifically three versions were developed to meet specific needs of the data being sent. ENSURE 1.0 addresses reliability, 2.0 enforces a time limit and the final version, 3.0, provides a balance of the two. A network engineer can set each specific area of the plant to use a different version of ENSURE based network performance needs for the data it produces. The end result being a plant wide wireless network that performs in a timely and reliable fashion

    Dynamic information and constraints in source and channel coding

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 237-251).This thesis explore dynamics in source coding and channel coding. We begin by introducing the idea of distortion side information, which does not directly depend on the source but instead affects the distortion measure. Such distortion side information is not only useful at the encoder but under certain conditions knowing it at the encoder is optimal and knowing it at the decoder is useless. Thus distortion side information is a natural complement to Wyner-Ziv side information and may be useful in exploiting properties of the human perceptual system as well as in sensor or control applications. In addition to developing the theoretical limits of source coding with distortion side information, we also construct practical quantizers based on lattices and codes on graphs. Our use of codes on graphs is also of independent interest since it highlights some issues in translating the success of turbo and LDPC codes into the realm of source coding. Finally, to explore the dynamics of side information correlated with the source, we consider fixed lag side information at the decoder. We focus on the special case of perfect side information with unit lag corresponding to source coding with feedforward (the dual of channel coding with feedback).(cont.) Using duality, we develop a linear complexity algorithm which exploits the feedforward information to achieve the rate-distortion bound. The second part of the thesis focuses on channel dynamics in communication by introducing a new system model to study delay in streaming applications. We first consider an adversarial channel model where at any time the channel may suffer a burst of degraded performance (e.g., due to signal fading, interference, or congestion) and prove a coding theorem for the minimum decoding delay required to recover from such a burst. Our coding theorem illustrates the relationship between the structure of a code, the dynamics of the channel, and the resulting decoding delay. We also consider more general channel dynamics. Specifically, we prove a coding theorem establishing that, for certain collections of channel ensembles, delay-universal codes exist that simultaneously achieve the best delay for any channel in the collection. Practical constructions with low encoding and decoding complexity are described for both cases.(cont.) Finally, we also consider architectures consisting of both source and channel coding which deal with channel dynamics by spreading information over space, frequency, multiple antennas, or alternate transmission paths in a network to avoid coding delays. Specifically, we explore whether the inherent diversity in such parallel channels should be exploited at the application layer via multiple description source coding, at the physical layer via parallel channel coding, or through some combination of joint source-channel coding. For on-off channel models application layer diversity architectures achieve better performance while for channels with a continuous range of reception quality (e.g., additive Gaussian noise channels with Rayleigh fading), the reverse is true. Joint source-channel coding achieves the best of both by performing as well as application layer diversity for on-off channels and as well as physical layer diversity for continuous channels.by Emin Martinian.Ph.D

    Error-resilient multi-view video plus depth based 3-D video coding

    Get PDF
    Three Dimensional (3-D) video, by definition, is a collection of signals that can provide depth perception of a 3-D scene. With the development of 3-D display technologies and interactive multimedia systems, 3-D video has attracted significant interest from both industries and academia with a variety of applications. In order to provide desired services in various 3-D video applications, the multiview video plus depth (MVD) representation, which can facilitate the generation of virtual views, has been determined to be the best format for 3-D video data. Similar to 2-D video, compressed 3-D video is highly sensitive to transmission errors due to errors propagated from the current frame to the future predicted frames. Moreover, since the virtual views required for auto-stereoscopic displays are rendered from the compressed texture videos and depth maps, transmission errors of the distorted texture videos and depth maps can be further propagated to the virtual views. Besides, the distortions in texture and depth show different effects on the rendering views. Therefore, compared to the reliability of the transmission of the 2-D video, error-resilient texture video and depth map coding are facing major new challenges. This research concentrates on improving the error resilience performance of MVD-based 3-D video in packet loss scenarios. Based on the analysis of the propagating behaviour of transmission errors, a Wyner-Ziv (WZ)-based error-resilient algorithm is first designed for coding of the multi-view video data or depth data. In this scheme, an auxiliary redundant stream encoded according to WZ principle is employed to protect a primary stream encoded with standard multi-view video coding codec. Then, considering the fact that different combinations of texture and depth coding mode will exhibit varying robustness to transmission errors, a rate-distortion optimized mode switching scheme is proposed to strike the optimal trade-off between robustness and compression effciency. In this approach, the texture and depth modes are jointly optimized by minimizing the overall distortion of both the coded and synthesized views subject to a given bit rate. Finally, this study extends the research on the reliable transmission of view synthesis prediction (VSP)-based 3-D video. In order to mitigate the prediction position error caused by packet losses in the depth map, a novel disparity vector correction algorithm is developed, where the corrected disparity vector is calculated from the depth error. To facilitate decoder error concealment, the depth error is recursively estimated at the decoder. The contributions of this dissertation are multifold. First, the proposed WZbased error-resilient algorithm can accurately characterize the effect of transmission error on multi-view distortion at the transform domain in consideration of both temporal and inter-view error propagation, and based on the estimated distortion, this algorithm can perform optimal WZ bit allocation at the encoder through explicitly developing a sophisticated rate allocation strategy. This proposed algorithm is able to provide a finer granularity in performing rate adaptivity and unequal error protection for multi-view data, not only at the frame level, but also at the bit-plane level. Secondly, in the proposed mode switching scheme, a new analytic model is formulated to optimally estimate the view synthesis distortion due to packet losses, in which the compound impact of the transmission distortions of both the texture video and the depth map on the quality of the synthesized view is mathematically analysed. The accuracy of this view synthesis distortion model is demonstrated via simulation results and, further, the estimated distortion is integrated into a rate-distortion framework for optimal mode switching to achieve substantial performance gains over state-of-the-art algorithms. Last, but not least, this dissertation provides a preliminary investigation of VSP-based 3-D video over unreliable channel. In the proposed disparity vector correction algorithm, the pixel-level depth map error can be precisely estimated at the decoder without the deterministic knowledge of the error-free reconstructed depth. The approximation of the innovation term involved in depth error estimation is proved theoretically. This algorithm is very useful to conceal the position-erroneous pixels whose disparity vectors are correctly received

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF

    Computational inference and control of quality in multimedia services

    Get PDF
    Quality is the degree of excellence we expect of a service or a product. It is also one of the key factors that determine its value. For multimedia services, understanding the experienced quality means understanding how the delivered delity, precision and reliability correspond to the users' expectations. Yet the quality of multimedia services is inextricably linked to the underlying technology. It is developments in video recording, compression and transport as well as display technologies that enables high quality multimedia services to become ubiquitous. The constant evolution of these technologies delivers a steady increase in performance, but also a growing level of complexity. As new technologies stack on top of each other the interactions between them and their components become more intricate and obscure. In this environment optimizing the delivered quality of multimedia services becomes increasingly challenging. The factors that aect the experienced quality, or Quality of Experience (QoE), tend to have complex non-linear relationships. The subjectively perceived QoE is hard to measure directly and continuously evolves with the user's expectations. Faced with the diculty of designing an expert system for QoE management that relies on painstaking measurements and intricate heuristics, we turn to an approach based on learning or inference. The set of solutions presented in this work rely on computational intelligence techniques that do inference over the large set of signals coming from the system to deliver QoE models based on user feedback. We furthermore present solutions for inference of optimized control in systems with no guarantees for resource availability. This approach oers the opportunity to be more accurate in assessing the perceived quality, to incorporate more factors and to adapt as technology and user expectations evolve. In a similar fashion, the inferred control strategies can uncover more intricate patterns coming from the sensors and therefore implement farther-reaching decisions. Similarly to natural systems, this continuous adaptation and learning makes these systems more robust to perturbations in the environment, longer lasting accuracy and higher eciency in dealing with increased complexity. Overcoming this increasing complexity and diversity is crucial for addressing the challenges of future multimedia system. Through experiments and simulations this work demonstrates that adopting an approach of learning can improve the sub jective and objective QoE estimation, enable the implementation of ecient and scalable QoE management as well as ecient control mechanisms
    • …
    corecore