1,811 research outputs found

    Scheduling Real-time Divisible Loads in Cluster Computing Environment

    Get PDF
    The significance of cluster computing in solving massively parallel workloads is tremendous. Divisible Load Theory has proven to be very successful in optimizing the usage of the system resources by partitioning the arbitrarily divisible loads adequately among the cluster nodes. Arbitrarily divisible loads have significant real-world applications in high energy and particle physics. In this thesis, various algorithms for a cluster computing environment are studied including the ones dealing with divisible load theory confirming DLT based algorithms performing better in most cases. The loads that are considered in this thesis are hard real-time tasks with associated deadlines. Specifically, a comparison is made between clusters with one where the head node doesn't participate in processing of the work-loads with the other where the head node does participate in processing of the work-loads. A new mathematical formula is derived for the task execution time corresponding to the new scenario of head node possessing front-end processing capability. The existing algorithms corresponding to Real-Time Divisible Load Theory are then implemented using this new formula to examine the scheduling performance in this new scenario compared to the conventional scenario where the head node lacks front-end processing capability

    A Framework for the Design and Simulation of Embedded Vision Applications Based on OpenVX and ROS

    Get PDF
    Customizing computer vision applications for embedded systems is a common and widespread problem in the cyber-physical systems community. Such a customization means parametrizing the algorithm by considering the external environment and mapping the Software application to the heterogeneous Hardware resources by satisfying non-functional constraints like performance, power, and energy consumption. This work presents a framework for the design and simulation of embedded vision applications that integrates the OpenVX standard platform with the Robot Operating System (ROS). The paper shows how the framework has been applied to tune the ORB-SLAM application for an NVIDIA Jetson TX2 board by considering different environment contexts and different design constraints

    Artificial Intelligence for Smart Transportation

    Full text link
    There are more than 7,000 public transit agencies in the U.S. (and many more private agencies), and together, they are responsible for serving 60 billion passenger miles each year. A well-functioning transit system fosters the growth and expansion of businesses, distributes social and economic benefits, and links the capabilities of community members, thereby enhancing what they can accomplish as a society. Since affordable public transit services are the backbones of many communities, this work investigates ways in which Artificial Intelligence (AI) can improve efficiency and increase utilization from the perspective of transit agencies. This book chapter discusses the primary requirements, objectives, and challenges related to the design of AI-driven smart transportation systems. We focus on three major topics. First, we discuss data sources and data. Second, we provide an overview of how AI can aid decision-making with a focus on transportation. Lastly, we discuss computational problems in the transportation domain and AI approaches to these problems.Comment: This is a pre-print for a book chapter to appear in Vorobeychik, Yevgeniy., and Mukhopadhyay, Ayan., (Eds.). (2023). Artificial Intelligence and Society. ACM Pres

    Analysis of power consumption in heterogeneous virtual machine environments

    Get PDF
    Reduction of energy consumption in Cloud computing datacenters today is a hot a research topic, as these consume large amounts of energy. Furthermore, most of the energy is used inefficiently because of the improper usage of computational resources such as CPU, storage and network. A good balance between the computing resources and performed workload is mandatory. In the context of data-intensive applications, a significant portion of energy is consumed just to keep alive virtual machines or to move data around without performing useful computation. Moreover, heterogeneity of resources increases the difficulty degree, when trying to achieve energy efficiency. Power consumption optimization requires identification of those inefficiencies in the underlying system and applications. Based on the relation between server load and energy consumption, we study the efficiency of data-intensive applications, and the penalties, in terms of power consumption, that are introduced by different degrees of heterogeneity of the virtual machines characteristics in a cluster

    Improvement Energy Efficiency for a Hybrid Multibank Memory in Energy Critical Applications

    Get PDF
    High performance, low power multiprocessor/multibank memory system requires a compiler that provides efficient data partitioning and mapping procedures. This paper introduced two compiler techniques for the data mapping to multibank memory, since data mapping is still an open problem and needs a better solution. The multibank memory can be consisted of volatile and non-volatile memory components to support ultra-low powered wearable devices. This hybrid memory system including volatile and non-volatile memory components yields higher complexity to map data onto it. To efficiently solve this mapping problem, we formulate it to a simple decision problem. Based on the problem definition, we proposed two efficient algorithms to determine the placement of data to the multibank memory. The proposed techniques consider the characteristic of the non-volatile memory that its write operation consumes more energy than the same operation of a volatile memory even though it provides ultra-low operation power and nearly zero leakage current. The proposed technique solves this negative effect of non-volatile memory by using efficient data placement technique and hybrid memory architecture. In experimental section, the result shows that the proposed techniques improve energy saving up to 59.5% for the hybrid multibank memory architecture

    A Preventive Medicine Framework for Wearable Abiotic Glucose Detection System

    Get PDF
    In this work, we present a novel abiotic glucose fuel cell with battery-less remote access. In the presence of a glucose analyte, we characterized the power generation and biosensing capabilities. This system is developed on a flexible substrate in bacterial nanocellulose with gold nanoparticles used as a conductive ink for piezoelectric deposition based printing. The abiotic glucose fuel cell is constructed using colloidal platinum on gold (Au-co-Pt) and a composite of silver oxide nanoparticles and carbon nanotubes as the anodic and cathodic materials. At a concentration of 20 mM glucose, the glucose fuel cell produced a maximum open circuit voltage of 0.57 V and supplied a maximum short circuit current density of 0.581 mA/cm2 with a peak power density of 0.087 mW/cm2 . The system was characterized by testing its performance using electrochemical techniques like linear sweep voltammetry, cyclic voltammetry, chronoamperometry in the presence of various glucose level at the physiological temperatures. An open circuit voltage (Voc) of 0.43 V, short circuit current density (Isc) of 0.405 mA/cm2 , and maximum power density (Pmax) of 0.055 mW/cm2 at 0.23 V were achieved in the presence of 5 mM physiologic glucose. The results indicate that glucose fuel cells can be employed for the development of a self-powered glucose sensor. The glucose monitoring device demonstrated sensitivity of 1.87 uA/mMcm2 and a linear dynamic range of 1 mM to 45 mM with a correlation coefficient of 0.989 when utilized as a self-powered glucose sensor. For wireless communication, the incoming voltage from the abiotic fuel cell was fed to a low power microcontroller that enables battery less communication using NFC technology. The voltage translates to the NFC module as the digital signals, which are displayed on a custom-built android application. The digital signals are converted to respective glucose concentration using a correlation algorithm that allows data to be processed and recorded for further analysis. The android application is designed to record the time, date stamp, and other independent features (e.g. age, height, weight) with the glucose measurement to allow the end-user to keep track of their glucose levels regularly. Analytics based on in-vitro testing were conducted to build a machine learning model that enables future glucose prediction for 15, 30 or 60 minutes

    Accelerating Real-Time, High-Resolution Depth Upsampling on FPGAs

    Get PDF
    While the popularity of high-resolution, computer-vision applications (e.g. mixed reality, autonomous vehicles) is increasing, there have been complementary advances in time-of-flight (ToF) depth-sensor resolution and quality. These advances in ToF sensors provide a platform that can enable real-time, depth-upsampling algorithms targeted for high-resolution video systems with low-latency requirements. This thesis demonstrates that filter-based upsampling algorithms are feasible for real-time, low-power scenarios, such as those on HMDs. Specifically, the author profiled, parallelized, and accelerated a filter-based depth-upsampling algorithm on an FPGA using high-level synthesis tools from Xilinx. We show that our accelerated algorithm can accurately upsample the resolution and reduce the noise of ToF sensors. We also demonstrate that this algorithm exceeds the real-time requirements of 90 frames-per-second (FPS) and 11 ms latency of mixed-reality hardware, achieving a lower-bound speedup of 40 times over the fastest CPU-only version and a 4.7 times speedup over the original GPU implementation
    corecore