109 research outputs found

    Proceedings, MSVSCC 2014

    Get PDF
    Proceedings of the 8th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 17, 2014 at VMASC in Suffolk, Virginia

    Deep Model for Improved Operator Function State Assessment

    Get PDF
    A deep learning framework is presented for engagement assessment using EEG signals. Deep learning is a recently developed machine learning technique and has been applied to many applications. In this paper, we proposed a deep learning strategy for operator function state (OFS) assessment. Fifteen pilots participated in a flight simulation from Seattle to Chicago. During the four-hour simulation, EEG signals were recorded for each pilot. We labeled 20- minute data as engaged and disengaged to fine-tune the deep network and utilized the remaining vast amount of unlabeled data to initialize the network. The trained deep network was then used to assess if a pilot was engaged during the four-hour simulation

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    Multi-stage stochastic optimization and reinforcement learning for forestry epidemic and covid-19 control planning

    Get PDF
    This dissertation focuses on developing new modeling and solution approaches based on multi-stage stochastic programming and reinforcement learning for tackling biological invasions in forests and human populations. Emerald Ash Borer (EAB) is the nemesis of ash trees. This research introduces a multi-stage stochastic mixed-integer programming model to assist forest agencies in managing emerald ash borer insects throughout the U.S. and maximize the public benets of preserving healthy ash trees. This work is then extended to present the first risk-averse multi-stage stochastic mixed-integer program in the invasive species management literature to account for extreme events. Significant computational achievements are obtained using a scenario dominance decomposition and cutting plane algorithm.The results of this work provide crucial insights and decision strategies for optimal resource allocation among surveillance, treatment, and removal of ash trees, leading to a better and healthier environment for future generations. This dissertation also addresses the computational difficulty of solving one of the most difficult classes of combinatorial optimization problems, the Multi-Dimensional Knapsack Problem (MKP). A novel 2-Dimensional (2D) deep reinforcement learning (DRL) framework is developed to represent and solve combinatorial optimization problems focusing on MKP. The DRL framework trains different agents for making sequential decisions and finding the optimal solution while still satisfying the resource constraints of the problem. To our knowledge, this is the first DRL model of its kind where a 2D environment is formulated, and an element of the DRL solution matrix represents an item of the MKP. Our DRL framework shows that it can solve medium-sized and large-sized instances at least 45 and 10 times faster in CPU solution time, respectively, with a maximum solution gap of 0.28% compared to the solution performance of CPLEX. Applying this methodology, yet another recent epidemic problem is tackled, that of COVID-19. This research investigates a reinforcement learning approach tailored with an agent-based simulation model to simulate the disease growth and optimize decision-making during an epidemic. This framework is validated using the COVID-19 data from the Center for Disease Control and Prevention (CDC). Research results provide important insights into government response to COVID-19 and vaccination strategies

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Proceedings, MSVSCC 2011

    Get PDF
    Proceedings of the 5th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 14, 2011 at VMASC in Suffolk, Virginia. 186 pp

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    IN SILICO METHODS FOR DRUG DESIGN AND DISCOVERY

    Get PDF
    Computer-aided drug design (CADD) methodologies are playing an ever-increasing role in drug discovery that are critical in the cost-effective identification of promising drug candidates. These computational methods are relevant in limiting the use of animal models in pharmacological research, for aiding the rational design of novel and safe drug candidates, and for repositioning marketed drugs, supporting medicinal chemists and pharmacologists during the drug discovery trajectory.Within this field of research, we launched a Research Topic in Frontiers in Chemistry in March 2019 entitled “In silico Methods for Drug Design and Discovery,” which involved two sections of the journal: Medicinal and Pharmaceutical Chemistry and Theoretical and Computational Chemistry. For the reasons mentioned, this Research Topic attracted the attention of scientists and received a large number of submitted manuscripts. Among them 27 Original Research articles, five Review articles, and two Perspective articles have been published within the Research Topic. The Original Research articles cover most of the topics in CADD, reporting advanced in silico methods in drug discovery, while the Review articles offer a point of view of some computer-driven techniques applied to drug research. Finally, the Perspective articles provide a vision of specific computational approaches with an outlook in the modern era of CADD
    • …
    corecore