207,293 research outputs found

    An optimization approach to study the phase changing behavior of multi-component mixtures

    Full text link
    The appropriate design, construction, and operation of carbon capture and storage (CCS) and enhanced oil recovery (EOR) processes require a deep understanding of the resulting phases behavior in hydrocarbons-CO_2 multi-component mixtures under reservoir conditions. To model this behavior a nonlinear system consists of the equation of states and some mixing rules (for each component) needed to be solved simultaneously. The mixing usually requires to model the binary interaction between the components of the mixture. This work employs optimization techniques to enhance the predictions of such model by optimizing the binary interaction parameters. The results show that the optimized parameters, although obtained mathematically, are in physical ranges and can reproduce successfully the experimental observations, specially for the multi-component hydrocarbons systems containing Carbon dioxide at reservoir temperatures and pressuresComment: To be published in Cadernos do IME - S\'erie Matem\'atica da UER

    Connected Component Algorithm for Gestures Recognition

    Get PDF
    This paper presents head and hand gestures recognition system for Human Computer Interaction (HCI). Head and Hand gestures are an important modality for human computer interaction. Vision based recognition system can give computers the capability of understanding and responding to the hand and head gestures. The aim of this paper is the proposal of real time vision system for its application within a multimedia interaction environment. This recognition system consists of four modules, i.e. capturing the image, image extraction, pattern matching and command determination. If hand and head gestures are shown in front of the camera, hardware will perform respective action. Gestures are matched with the stored database of gestures using pattern matching. Corresponding to matched gesture, the hardware is moved in left, right, forward and backward directions. An algorithm for optimizing connected component in gesture recognition is proposed, which makes use of segmentation in two images. Connected component algorithm scans an image and group its pixels into component based on pixel connectivity i.e. all pixels in connected component share similar pixel intensity values and are in some way connected with each other. Once all groups have been determined, each pixel is labeled with a color according to component it was assigned to

    How to Retrain Recommender System? A Sequential Meta-Learning Method

    Full text link
    Practical recommender systems need be periodically retrained to refresh the model with new interaction data. To pursue high model fidelity, it is usually desirable to retrain the model on both historical and new data, since it can account for both long-term and short-term user preference. However, a full model retraining could be very time-consuming and memory-costly, especially when the scale of historical data is large. In this work, we study the model retraining mechanism for recommender systems, a topic of high practical values but has been relatively little explored in the research community. Our first belief is that retraining the model on historical data is unnecessary, since the model has been trained on it before. Nevertheless, normal training on new data only may easily cause overfitting and forgetting issues, since the new data is of a smaller scale and contains fewer information on long-term user preference. To address this dilemma, we propose a new training method, aiming to abandon the historical data during retraining through learning to transfer the past training experience. Specifically, we design a neural network-based transfer component, which transforms the old model to a new model that is tailored for future recommendations. To learn the transfer component well, we optimize the "future performance" -- i.e., the recommendation accuracy evaluated in the next time period. Our Sequential Meta-Learning(SML) method offers a general training paradigm that is applicable to any differentiable model. We demonstrate SML on matrix factorization and conduct experiments on two real-world datasets. Empirical results show that SML not only achieves significant speed-up, but also outperforms the full model retraining in recommendation accuracy, validating the effectiveness of our proposals. We release our codes at: https://github.com/zyang1580/SML.Comment: Appear in SIGIR 202

    Laser induced fluorescence for axion dark matter detection: a feasibility study in YLiF4_4:Er3+^{3+}

    Get PDF
    We present a detection scheme to search for QCD axion dark matter, that is based on a direct interaction between axions and electrons explicitly predicted by DFSZ axion models. The local axion dark matter field shall drive transitions between Zeeman-split atomic levels separated by the axion rest mass energy mac2m_a c^2. Axion-related excitations are then detected with an upconversion scheme involving a pump laser that converts the absorbed axion energy (∼\sim hundreds of μ\mueV) to visible or infrared photons, where single photon detection is an established technique. The proposed scheme involves rare-earth ions doped into solid-state crystalline materials, and the optical transitions take place between energy levels of 4fN4f^N electron configuration. Beyond discussing theoretical aspects and requirements to achieve a cosmologically relevant sensitivity, especially in terms of spectroscopic material properties, we experimentally investigate backgrounds due to the pump laser at temperatures in the range 1.9−4.21.9-4.2 K. Our results rule out excitation of the upper Zeeman component of the ground state by laser-related heating effects, and are of some help in optimizing activated material parameters to suppress the multiphonon-assisted Stokes fluorescence.Comment: 8 pages, 5 figure

    Hikester - the event management application

    Full text link
    Today social networks and services are one of the most important part of our everyday life. Most of the daily activities, such as communicating with friends, reading news or dating is usually done using social networks. However, there are activities for which social networks do not yet provide adequate support. This paper focuses on event management and introduces "Hikester". The main objective of this service is to provide users with the possibility to create any event they desire and to invite other users. "Hikester" supports the creation and management of events like attendance of football matches, quest rooms, shared train rides or visit of museums in foreign countries. Here we discuss the project architecture as well as the detailed implementation of the system components: the recommender system, the spam recognition service and the parameters optimizer

    BoostFM: Boosted Factorization Machines for Top-N Feature-based Recommendation

    Get PDF
    Feature-based matrix factorization techniques such as Factorization Machines (FM) have been proven to achieve impressive accuracy for the rating prediction task. However, most common recommendation scenarios are formulated as a top-N item ranking problem with implicit feedback (e.g., clicks, purchases)rather than explicit ratings. To address this problem, with both implicit feedback and feature information, we propose a feature-based collaborative boosting recommender called BoostFM, which integrates boosting into factorization models during the process of item ranking. Specifically, BoostFM is an adaptive boosting framework that linearly combines multiple homogeneous component recommenders, which are repeatedly constructed on the basis of the individual FM model by a re-weighting scheme. Two ways are proposed to efficiently train the component recommenders from the perspectives of both pairwise and listwise Learning-to-Rank (L2R). The properties of our proposed method are empirically studied on three real-world datasets. The experimental results show that BoostFM outperforms a number of state-of-the-art approaches for top-N recommendation

    Route Swarm: Wireless Network Optimization through Mobility

    Full text link
    In this paper, we demonstrate a novel hybrid architecture for coordinating networked robots in sensing and information routing applications. The proposed INformation and Sensing driven PhysIcally REconfigurable robotic network (INSPIRE), consists of a Physical Control Plane (PCP) which commands agent position, and an Information Control Plane (ICP) which regulates information flow towards communication/sensing objectives. We describe an instantiation where a mobile robotic network is dynamically reconfigured to ensure high quality routes between static wireless nodes, which act as source/destination pairs for information flow. The ICP commands the robots towards evenly distributed inter-flow allocations, with intra-flow configurations that maximize route quality. The PCP then guides the robots via potential-based control to reconfigure according to ICP commands. This formulation, deemed Route Swarm, decouples information flow and physical control, generating a feedback between routing and sensing needs and robotic configuration. We demonstrate our propositions through simulation under a realistic wireless network regime.Comment: 9 pages, 4 figures, submitted to the IEEE International Conference on Intelligent Robots and Systems (IROS) 201

    Stability of Soft Quasicrystals in a Coupled-Mode Swift-Hohenberg Model for Three-Component Systems

    Full text link
    In this article, we discuss the stability of soft quasicrystalline phases in a coupled-mode Swift-Hohenberg model for three-component systems, where the characteristic length scales are governed by the positive-definite gradient terms. Classic two-mode approximation method and direct numerical minimization are applied to the model. In the latter approach, we apply the projection method to deal with the potentially quasiperiodic ground states. A variable cell method of optimizing the shape and size of higher-dimensional periodic cell is developed to minimize the free energy with respect to the order parameters. Based on the developed numerical methods, we rediscover decagonal and dodecagonal quasicrystalline phases, and find diverse periodic phases and complex modulated phases. Furthermore, phase diagrams are obtained in various phase spaces by comparing the free energies of different candidate structures. It does show not only the important roles of system parameters, but also the effect of optimizing computational domain. In particular, the optimization of computational cell allows us to capture the ground states and phase behavior with higher fidelity. We also make some discussions on our results and show the potential of applying our numerical methods to a larger class of mean-field free energy functionals.Comment: 26 pages, 13 figures; accepted by Communications in Computational Physic
    • …
    corecore