99 research outputs found

    Performance Modelling and Measurements of TCP Transfer Throughput in 802.11based WLANs

    Get PDF
    The growing popularity of the 802.11 standard for building local wireless networks has generated an extensive literature on the performance modelling of its MAC protocol. However, most of the available studies focus on the throughput analysis in saturation conditions, while very little has been done on investigating the interactions between the 802.11 MAC protocol and closed-loop transport protocols such as TCP. This paper addresses this issue by developing an analytical model to compute the stationary probability distribution of the number of backlogged nodes in a WLAN in the presence of persistent TCP-controlled download and upload data transfers. By embedding the network backlog distribution in the MAC protocol modelling, we can precisely estimate the throughput performance of TCP connections. A large set of experiments conducted in a real network validates the model correctness for a wide range of configurations. A particular emphasis is devoted to investigate and explain the TCP fairness characteristics. Our analytical model and the supporting experimental outcomes demonstrate that using default settings for the capacity of devices\u27 output queues provides a fair allocation of channel bandwidth to the TCP connections, independently of the number of downstream and upstream flows. Furthermore, we show that the TCP total throughput does not degrade by increasing the number of wireless stations

    A cross-layer architecture to improve mobile host rate performance and to solve unfairness problem in WLANs

    Get PDF
    The evolution of the Internet has been mainly promoted in recent years by the emergence and pro- liferation of wireless access networks towards a global ambient and pervasive network accessed from mobile devices. These new access networks have introduced new MAC layers independently of the legacy "wire- oriented" protocols that are still at the heart of the pro- tocol stacks of the end systems. This principle of isola- tion and independence between layers advocated by the OSI model has its drawbacks of maladjustment between new access methods and higher-level protocols built on the assumption of a wired Internet. In this paper, we introduce and deliver solutions for several pathologi- cal communication behaviors resulting from the malad- justment between WLAN MAC and higher layer stan- dard protocols such as TCP/IP and UDP/IP. Specially, based on an efficient analytical model for WLANs band- width estimation, we address in this paper the two fol- lowing issues: 1) Performance degradation due to the lack of flow control between the MAC and upper layer resulting in potential MAC buffer overflow; 2) Unfair bandwidth share issues between various type of flows. We show how these syndromes can be efficiently solved from neutral "cross layer" interactions which entail no changes in the considered protocols and standards

    Multi-layer traffic control for wireless networks

    Get PDF
    Le reti Wireless LAN, così come definite dallo standard IEEE 802.11, garantiscono connettività senza fili nei cosiddetti “hot-spot” (aeroporti, hotel, etc.), nei campus universitari, nelle intranet aziendali e nelle abitazioni. In tali scenari, le WLAN sono denotate come “ad infrastruttura” nel senso che la copertura della rete è basata sulla presenza di un “Access Point” che fornisce alle stazioni mobili l’accesso alla rete cablata. Esiste un ulteriore approccio (chiamato “ad-hoc”) in cui le stazioni mobili appartenenti alla WLAN comunicano tra di loro senza l’ausilio dell’Access Point. Le Wireless LAN tipicamente sono connesse alla rete di trasporto (che essa sia Internet o una Intranet aziendale) usando un’infrastruttura cablata. Le reti wireless Mesh ad infrastruttura (WIMN) rappresentano un’alternativa valida e meno costosa alla classica infrastruttura cablata. A testimonianza di quanto appena affermato vi è la comparsa e la crescita sul mercato di diverse aziende specializzate nella fornitura di infrastrutture di trasporto wireless e il lancio di varie attività di standardizzazione (tra cui spicca il gruppo 802.11s). La facilità di utilizzo, di messa in opera di una rete wireless e i costi veramente ridotti hanno rappresentato fattori critici per lo straordinario successo di tale tecnologia. Di conseguenza possiamo affermare che la tecnologia wireless ha modificato lo stile di vita degli utenti, il modo di lavorare, il modo di passare il tempo libero (video conferenze, scambio foto, condivisione di brani musicali, giochi in rete, messaggistica istantanea ecc.). D’altro canto, lo sforzo per garantire lo sviluppo di reti capaci di supportare servizi dati ubiqui a velocità di trasferimento elevate è strettamente legato a numerose sfide tecniche tra cui: il supporto per l’handover tra differenti tecnologie (WLAN/3G), la certezza di accesso e autenticazione sicure, la fatturazione e l’accounting unificati, la garanzia di QoS ecc. L’attività di ricerca svolta nell’arco del Dottorato si è focalizzata sulla definizione di meccanismi multi-layer per il controllo del traffico in reti wireless. In particolare, nuove soluzioni di controllo del traffico sono state realizzate a differenti livelli della pila protocollare (dallo strato data-link allo strato applicativo) in modo da fornire: funzionalità avanzate (autenticazione sicura, differenziazione di servizio, handover trasparente) e livelli soddisfacenti di Qualità del Servizio. La maggior parte delle soluzioni proposte in questo lavoro di tesi sono state implementate in test-bed reali. Questo lavoro riporta i risultati della mia attività di ricerca ed è organizzato nel seguente modo: ogni capitolo presenta, ad uno specifico strato della pila protocollare, un meccanismo di controllo del traffico con l’obiettivo di risolvere le problematiche presentate precedentemente. I Capitoli 1 e 2 fanno riferimento allo strato di Trasporto ed investigano il problema del mantenimento della fairness per le connessioni TCP. L’unfairness TCP conduce ad una significativa degradazione delle performance implicando livelli non soddisfacenti di QoS. Questi capitoli descrivono l’attività di ricerca in cui ho impiegato il maggior impegno durante gli studi del dottorato. Nel capitolo 1 viene presentato uno studio simulativo delle problematiche di unfairness TCP e vengono introdotti due possibili soluzioni basate su rate-control. Nel Capitolo 2 viene derivato un modello analitico per la fairness TCP e si propone uno strumento per la personalizzazione delle politiche di fairness. Il capitolo 3 si focalizza sullo strato Applicativo e riporta diverse soluzioni di controllo del traffico in grado di garantire autenticazione sicura in scenari di roaming tra provider wireless. Queste soluzioni rappresentano parte integrante del framework UniWireless, un testbed nazionale sviluppato nell’ambito del progetto TWELVE. Il capitolo 4 descrive, nuovamente a strato Applicativo, una soluzione (basata su SIP) per la gestione della mobilità degli utenti in scenari di rete eterogenei ovvero quando diverse tecnologie di accesso radio sono presenti (802.11/WiFi, Bluetooth, 2.5G/3G). Infine il Capitolo 5 fa riferimento allo strato Data-Link presentando uno studio preliminare di un approccio per il routing e il load-balancing in reti Mesh infrastrutturate.Wireless LANs, as they have been defined by the IEEE 802.11 standard, are shared media enabling connectivity in the so-called “hot-spots” (airports, hotel lounges, etc.), university campuses, enterprise intranets, as well as “in-home” for home internet access. With reference to the above scenarios, WLANs are commonly denoted as “infra-structured” in the sense that WLAN coverage is based on “Access Points” which provide the mobile stations with access to the wired network. In addition to this approach, there exists also an “ad-hoc” mode to organize WLANs where mobile stations talk to each other without the need of Access Points. Wireless LANs are typically connected to the wired backbones (Internet or corporate intranets) using a wired infrastructure. Wireless Infrastructure Mesh Networks (WIMN) may represent a viable and cost-effective alternative to this traditional wired approach. This is witnessed by the emergence and growth of many companies specialized in the provisioning of wireless infrastructure solutions, as well as the launch of standardization activities (such as 802.11s). The easiness of deploying and using a wireless network, and the low deployment costs have been critical factors in the extraordinary success of such technology. As a logical consequence, the wireless technology has allowed end users being connected everywhere – every time and it has changed several things in people’s lifestyle, such as the way people work, or how they live their leisure time (videoconferencing, instant photo or music sharing, network gaming, etc.). On the other side, the effort to develop networks capable of supporting ubiquitous data services with very high data rates in strategic locations is linked with many technical challenges including seamless vertical handovers across WLAN and 3G radio technologies, security, 3G-based authentication, unified accounting and billing, consistent QoS and service provisioning, etc. My PhD research activity have been focused on multi-layer traffic control for Wireless LANs. In particular, specific new traffic control solutions have been designed at different layers of the protocol stack (from the link layer to the application layer) in order to guarantee i) advanced features (secure authentication, service differentiation, seamless handover) and ii) satisfactory level of perceived QoS. Most of the proposed solutions have been also implemented in real testbeds. This dissertation presents the results of my research activity and is organized as follows: each Chapter presents, at a specific layer of the protocol stack, a traffic control mechanism in order to address the introduced above issues. Chapter 1 and Charter 2 refer to the Transport Layer, and they investigate the problem of maintaining fairness for TCP connections. TCP unfairness may result in significant degradation of performance leading to users perceiving unsatisfactory Quality of Service. These Chapters describe the research activity in which I spent the most significant effort. Chapter 1 proposes a simulative study of the TCP fairness issues and two different solutions based on Rate Control mechanism. Chapter 2 illustrates an analytical model of the TCP fairness and derives a framework allowing wireless network providers to customize fairness policies. Chapter 3 focuses on the Application Layer and it presents new traffic control solutions able to guarantee secure authentication in wireless inter-provider roaming scenarios. These solutions are an integral part of the UniWireless framework, a nationwide distributed Open Access testbed that has been jointly realized by different research units within the TWELVE national project. Chapter 4 describes again an Application Layer solution, based on Session Initiation Protocol to manage user mobility and provide seamless mobile multimedia services in a heterogeneous scenario where different radio access technologies are used (802.11/WiFi, Bluetooth, 2.5G/3G networks). Finally Chapter 5 refers to the Data Link Layer and presents a preliminary study of a general approach for routing and load balancing in Wireless Infrastructure Mesh Network. The key idea is to dynamically select routes among a set of slowly changing alternative network paths, where paths are created through the reuse of classical 802.1Q multiple spanning tree mechanisms

    WhiteHaul: an efficient spectrum aggregation system for low-cost and high capacity backhaul over white spaces

    Get PDF
    We address the challenge of backhaul connectivity for rural and developing regions, which is essential for universal fixed/mobile Internet access. To this end, we propose to exploit the TV white space (TVWS) spectrum for its attractive properties: low cost, abundance in under-served regions and favorable propagation characteristics. Specifically, we propose a system called WhiteHaul for the efficient aggregation of the TVWS spectrum tailored for the backhaul use case. At the core of WhiteHaul are two key innovations: (i) a TVWS conversion substrate that can efficiently handle multiple non-contiguous chunks of TVWS spectrum using multiple low cost 802.11n/ac cards but with a single antenna; (ii) novel use of MPTCP as a link-level tunnel abstraction and its use for efficiently aggregating multiple chunks of the TVWS spectrum via a novel uncoupled, cross-layer congestion control algorithm. Through extensive evaluations using a prototype implementation of WhiteHaul, we show that: (a) WhiteHaul can aggregate almost the whole of TV band with 3 interfaces and achieve nearly 600Mbps TCP throughput; (b) the WhiteHaul MPTCP congestion control algorithm provides an order of magnitude improvement over state of the art algorithms for typical TVWS backhaul links. We also present additional measurement and simulation based results to evaluate other aspects of the WhiteHaul design

    WhiteHaul: An Efficient Spectrum Aggregation System for Low-Cost and High Capacity Backhaul over White Spaces

    Get PDF
    We address the challenge of backhaul connectivity for rural and developing regions, which is essential for universal fixed/mobile Internet access. To this end, we propose to exploit the TV white space (TVWS) spectrum for its attractive properties: low cost, abundance in under-served regions and favorable propagation characteristics. Specifically, we propose a system called WhiteHaul for the efficient aggregation of the TVWS spectrum tailored for the backhaul use case. At the core of WhiteHaul are two key innovations: (i) a TVWS conversion substrate that can efficiently handle multiple non-contiguous chunks of TVWS spectrum using multiple low cost 802.11n/ac cards but with a single antenna; (ii) novel use of MPTCP as a link-level tunnel abstraction and its use for efficiently aggregating multiple chunks of the TVWS spectrum via a novel uncoupled, cross-layer congestion control algorithm. Through extensive evaluations using a prototype implementation of WhiteHaul, we show that: (a) WhiteHaul can aggregate almost the whole of TV band with 3 interfaces and achieve nearly 600Mbps TCP throughput; (b) the WhiteHaul MPTCP congestion control algorithm provides an order of magnitude improvement over state of the art algorithms for typical TVWS backhaul links. We also present additional measurement and simulation based results to evaluate other aspects of the WhiteHaul design

    Experimental analysis of WiMAX and meshed Wi-Fi quality of service

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesA indústria das telecomunicações tem sofrido uma evolução enorme nosúltimos anos. Tanto em termos de comunicações sem fios, como em termos deligações de banda larga, assistiu-se a uma adesão massiva por parte domercado, o que se traduziu num crescimento enorme, já que a tecnologia temque estar um passo à frente da procura, de forma a suprir as carências dosconsumidores. Assim, a evolução persegue um objectivo claro: possibilidadede possuir conectividade de banda larga em qualquer lugar e instante. Nestecontexto, aparecem as tecnologias WiMAX (Worldwide Interoperability forMicrowave Access) e WI-FI em Malha como possibilidades para atingir estefim. O tema desta dissertação incide no estudo das tecnologias de WiMAX e WI-FIem Malha, mais concretamente no estudo da Qualidade de Serviço (QoS)providenciada pelas normas IEEE 802.16 e IEEE 802.11s para serviços deVoIP e VoD. Esta tese apresenta a arquitectura desenvolvida para a correcta integração deQoS para serviços em tempo real no acesso à banda larga sem fios depróxima geração. De seguida, apresenta testes efectuados com osequipamentos disponíveis de WiMAX e WI-FI em Malha, de forma a mostrar ocorrecto comportamento da atribuição extremo-a-extremo de QoS nos cenáriosescolhidos com serviços em tempo real, bem como os efeitos da mobilidade natecnologia WI-FI em Malha. ABSTRACT: The telecommunication industry has suffered a massive evolution throughoutpast years. In terms of wireless communications, as well as broadbandconnections, we’ve seen a massive adoption by the market, which conductedinto an enormous growth, since the technology must always be one step aheadof the demand, in order to be to fulfill the needs of the consumers. Therefore,the evolution pursues one clear goal: the possibility to establish a broadbandconnection anywhere and anytime. In this context, the WiMAX (WorldwideInteroperability for Microwave Access) and Meshed WI-FI technologies appearas possibilities to reach this goal. The subject of this thesis is the study of both the WiMAX and Meshed WI-FItechnologies, and more concretely the study of the QoS provided by theIEEE802.16 and IEEE 802.11s standards to VoIP and VoD services. This thesis presents the architecture developed to provide the correctintegration of QoS for real-media traffic in next generation broadband wirelessaccess. It presents tests carried out with the available WiMAX and Meshed WI-FI equipments, to show the correct behavior in the attribution of end-to-endQoS in selected scenarios with real-time services, as well as mobility effects onWI-FI Wireless Mesh technology

    Optimisation centralisée de l'association dans les réseaux IEEE 802.11

    Get PDF
    In this thesis we study the problem of association in Wi-Fi networks. We propose solutions that allow a controller to optimize and manage in a centralized way the operations of association and reassociation. Association is expressed as combinatorial optimization problems. The proposed models consider interference between APs and are compliant with the DCF access method of the IEEE 802.11 standard. In the first model proposed we considered the case of a saturated network in which it is assumed that each AP permanently has frames to transmit. In this model, we have assumed that all the stations of the same AP have equivalent chances of transmission, ie the same number of accesses to the medium. The proposed objective function offers a good compromise between improving station throughput and equity. The numerical results obtained on realistic simulations have shown the effectiveness of this solution and show a significant improvement in WLAN performance compared to an association based on the value of the RSSI or compared to existing approaches. Subsequently, since the hypothesis of a saturated network all the time is not very realistic, we have proposed a solution that relies on real measurements such as station throughput requests and the error rates. Our solution seeks to balance the load between APs. Specifically, we seek to reduce the load of the most heavily loaded AP in the WLAN. To evaluate this load, we have proposed a mathematical model that allows to estimate the BTF "Busy Time Fraction" of an AP in any configuration (association scheme). This model is based on a Markov network. The model combined with the optimization problem allows to propose the best association. The evaluation of this solution by simulation has shown how accurate our BTF estimation, and has also shown its ability to balance the load between APs and satisfy the station throughput demands. To generalize this solution to the new versions of the IEEE 802.11 standard such as 802.11n/ac, we adapted the BTF estimation model to take into account the new improvements made by Wi-Fi on physical and MAC layers such as channel aggregation, frame aggregation and block acknowledgment. Thus, we have proposed a new metric that allows to express both the BTF of an AP and the frame aggregation rates of each of its stations. The numerical evaluation of this solution showed the advantage of the new metric compared to the BTF to improve the station throughputs and load balancing in the WLAN. It should be noted that, for the resolution of the combinatorial optimization problems formulated in this thesis, we used iterative local search heuristics. These heuristics are based on the same neighborhood structure, but the search procedures are different depending on the objective function of each model. This choice is justified by the effectiveness of local research in providing acceptable solutions in a reasonable time for complex combinatorial optimization problemsDans cette thèse nous étudions la problématique de l'association dans les réseaux Wi-Fi. Nous proposons des solutions qui permettent à un contrôleur d'optimiser et de gérer d'une manière centralisée les opérations d'association et de réassociation. L'association est exprimée sous forme de problèmes d'optimisations combinatoires. Les modèles proposés tiennent compte des interférences entre les APs et sont conformes avec la méthode d'accès DCF du standard IEEE 802.11. Dans le premier modèle proposé nous avons considéré le cas d'un réseau saturé dans lequel on suppose que chaque AP dispose en permanence de trames à transmettre. Dans ce modèle, nous avons supposé que toutes les stations d'un même AP ont des chances de transmission équivalentes autrement dit le même nombre d'accès au medium. La fonction objectif proposée offre un bon compromis entre l'amélioration du débit des stations et l'équité. Les résultats numériques obtenus sur des simulations réalistes ont montré l'efficacité de cette solution et présentent une amélioration significative des performances du WLAN par rapport à une association basée sur la valeur du RSSI ou par rapport aux approches existantes. Par la suite, étant donné que l'hypothèse d'un réseau tout le temps saturé n'est pas très réaliste, nous avons proposé une solution qui s'appuie sur des mesures réelles telles que les demandes de débit des stations et les taux d'erreur. Notre solution cherche à équilibrer la charge entre les APs. Plus précisément, nous cherchons à diminuer la charge de l'AP le plus chargé dans le WLAN. Pour évaluer cette charge, nous avons proposé un modèle mathématique qui permet d'estimer le BTF « Busy Time Fraction » d'un AP dans n'importe quelle configuration (schéma d'association). Ce modèle est basé sur un réseau de Markov. Le modèle associé au problème d'optimisation permet de proposer la meilleure association. L'évaluation de cette solution par simulation a montré à quel point notre estimation du BTF est précise, et a aussi montré sa capacité à équilibrer la charge entre les APs et à satisfaire la demande en débit des stations. Pour généraliser cette solution aux nouvelles versions du standard IEEE 802.11 comme 802.11n/ac, nous avons adapté le modèle d'estimation du BTF pour qu'il tienne compte des nouvelles améliorations apportées par les couches physiques et MAC du Wi-Fi telles que l'agrégation des canaux, l'agrégation des trames et le bloc d'acquittement. Ainsi, nous avons proposé une nouvelle métrique qui permet d'exprimer à la fois le BTF d'un AP et les taux d'agrégation de trames de chacune de ces stations. L'évaluation numérique de cette solution a montré l'avantage de la nouvelle métrique par rapport au BTF pour améliorer le débit des stations et l'équilibrage de charge dans le WLAN. Il est à noter que, pour la résolution des problèmes d'optimisation combinatoire formulés dans cette thèse, nous avons utilisé des heuristiques de recherche locale itérative. Ces heuristiques sont basées sur une même structure de voisinage, mais les procédures de recherches sont différentes selon la fonction objectif de chaque modèle. Ce choix est justifié par l'efficacité de la recherche locale à fournir des solutions acceptables dans un temps raisonnable pour des problèmes d'optimisation combinatoire complexe

    Improving aggregate user utilities and providing fairness in multi-rate wireless LANs

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 159-166).A distributed medium access control (MAC) protocol is responsible for allocating the shared spectrum efficiently and fairly among competing devices using a wireless local area network. Unfortunately, existing MAC protocols, including 802.11's DCF, achieve neither efficiency nor fairness under many realistic conditions. In this dissertation, we show that both bit and frame-based fairness,the most widely used notions, lead to drastically reduced aggregate throughput and increased average delay in typical environments, in which competing nodes transmit at different data transmission rates. We demonstrate the advantages of time-based fairness, in which each competing node receives an equal share of the wireless channel occupancy time. Through analysis, experiments on a Linux test bed, and simulation, we demonstrate that time-based fairness can lead to significant improvements in aggregate throughput and average delay. Through a game theoretic analysis and simulation, we also show that existing MAC protocols encourage non-cooperative nodes to employ globally inefficient transmission strategies that lead to low aggregate throughput. We show that providing long-term time share guarantees among competing nodes leads rational nodes to employ efficient transmission strategies at equilibriums.(cont.) We describe two novel solutions, TES (Time-fair Efficient and Scalable MAC protocol) and TBR (Time-based Regulator) that provide time-based fairness and long-term time share guarantees among competing nodes. TBR is a backward-compatible centralized solution that runs at the AP,works in conjunction with DCF, and requires no modifications to clients nor to DCF. TBR is appropriate for existing access point based networks, but not effective when nearby non-cooperative nodes fall under different administrative domains. Our evaluation of TBR on an 802.1lb/Linux test bed shows that TBR can improve aggregate TCP throughput by as much as 105% in rate diverse environments. TES is a non-backward compatible distributed contention-based MAC protocol that is effective in any environment, including non-cooperative environments. Furthermore, the aggregate throughputs sustained with increased loads. Through extensive simulation experiments, we demonstrate that TES is significantly more efficient(as much as 140% improvement in aggregate TCP throughput) and fairer than existing MAC protocols including DCF.by Godfrey Tan.Ph.D

    Medium access control and network planning in wireless networks

    Get PDF
    Wireless Local Area Networks (WLANs) and Wireless Metropolitan Area Networks (WMANs) are two of the main technologies in wireless data networks. WLANs have a short range and aim at providing connectivity to end users. On the other hand, WMANs have a long range and aim at serving as a backbone network and also at serving end users. In this dissertation, we consider the problem of Medium Access Control (MAC) in WLANs and the placement of Relay Stations (RSs) in WMANs. We propose a MAC scheme for WLANs in which stations contend by using jams on the channel. We present analytic and simulation results to find the optimal parameters of the scheme and measure its performance. Our scheme has a low collision rate and delay and a high throughput and fairness performance. Secondly, we present a MAC scheme for the latest generation of WLANs which have very high data rates. In this scheme, we divide the stations into groups and only one station from each group contends to the channel. We also use frame aggregation to reduce the overhead. We present analytic and simulation results which show that our scheme provides a small collision rate and, hence, achieves a high throughput. The results also show that our scheme provides a delay performance that is suitable for real-time applications and also has a high level of fairness. Finally, we consider the problem of placing Relay Stations (RSs) in WMANs. We consider the Worldwide Interoperability for Microwave Access (WIMAX) technology. The RSs are used to increase the capacity of the network and to extend its range. We present an optimization formulation that places RSs in the WiMAX network to serve a number of customers with a pre-defined bit rate. Our solution also provides fault-tolerance by allowing one RS to fail at a given time so that the performance to the users remains at a predictable level. The goal of our solution is to meet the demands of the users, provide fault-tolerance and minimize the number of RSs used
    corecore