2,554 research outputs found

    Optimizing Age-of-Information in a Multi-class Queueing System

    Get PDF
    We consider the age-of-information in a multi-class M/G/1M/G/1 queueing system, where each class generates packets containing status information. Age of information is a relatively new metric that measures the amount of time that elapsed between status updates, thus accounting for both the queueing delay and the delay between packet generation. This gives rise to a tradeoff between frequency of status updates, and queueing delay. In this paper, we study this tradeoff in a system with heterogenous users modeled as a multi-class M/G/1M/G/1 queue. To this end, we derive the exact peak age-of-Information (PAoI) profile of the system, which measures the "freshness" of the status information. We then seek to optimize the age of information, by formulating the problem using quasiconvex optimization, and obtain structural properties of the optimal solution

    Minimizing the Age of Information in Wireless Networks with Stochastic Arrivals

    Full text link
    We consider a wireless network with a base station serving multiple traffic streams to different destinations. Packets from each stream arrive to the base station according to a stochastic process and are enqueued in a separate (per stream) queue. The queueing discipline controls which packet within each queue is available for transmission. The base station decides, at every time t, which stream to serve to the corresponding destination. The goal of scheduling decisions is to keep the information at the destinations fresh. Information freshness is captured by the Age of Information (AoI) metric. In this paper, we derive a lower bound on the AoI performance achievable by any given network operating under any queueing discipline. Then, we consider three common queueing disciplines and develop both an Optimal Stationary Randomized policy and a Max-Weight policy under each discipline. Our approach allows us to evaluate the combined impact of the stochastic arrivals, queueing discipline and scheduling policy on AoI. We evaluate the AoI performance both analytically and using simulations. Numerical results show that the performance of the Max-Weight policy is close to the analytical lower bound

    Age-Optimal Updates of Multiple Information Flows

    Full text link
    In this paper, we study an age of information minimization problem, where multiple flows of update packets are sent over multiple servers to their destinations. Two online scheduling policies are proposed. When the packet generation and arrival times are synchronized across the flows, the proposed policies are shown to be (near) optimal for minimizing any time-dependent, symmetric, and non-decreasing penalty function of the ages of the flows over time in a stochastic ordering sense

    Update or Wait: How to Keep Your Data Fresh

    Full text link
    In this work, we study how to optimally manage the freshness of information updates sent from a source node to a destination via a channel. A proper metric for data freshness at the destination is the age-of-information, or simply age, which is defined as how old the freshest received update is since the moment that this update was generated at the source node (e.g., a sensor). A reasonable update policy is the zero-wait policy, i.e., the source node submits a fresh update once the previous update is delivered and the channel becomes free, which achieves the maximum throughput and the minimum delay. Surprisingly, this zero-wait policy does not always minimize the age. This counter-intuitive phenomenon motivates us to study how to optimally control information updates to keep the data fresh and to understand when the zero-wait policy is optimal. We introduce a general age penalty function to characterize the level of dissatisfaction on data staleness and formulate the average age penalty minimization problem as a constrained semi-Markov decision problem (SMDP) with an uncountable state space. We develop efficient algorithms to find the optimal update policy among all causal policies, and establish sufficient and necessary conditions for the optimality of the zero-wait policy. Our investigation shows that the zero-wait policy is far from the optimum if (i) the age penalty function grows quickly with respect to the age, (ii) the packet transmission times over the channel are positively correlated over time, or (iii) the packet transmission times are highly random (e.g., following a heavy-tail distribution)

    Uplink Age of Information of Unilaterally Powered Two-way Data Exchanging Systems

    Full text link
    We consider a two-way data exchanging system where a master node transfers energy and data packets to a slave node alternatively. The slave node harvests the transferred energy and performs information transmission as long as it has sufficient energy for current block, i.e., according to the best-effort policy. We examine the freshness of the received packets at the master node in terms of age of information (AoI), which is defined as the time elapsed after the generation of the latest received packet. We derive average uplink AoI and uplink data rate as functions of downlink data rate in closed form. The obtained results illustrate the performance limit of the unilaterally powered two-way data exchanging system in terms of timeliness and efficiency. The results also specify the achievable tradeoff between the data rates of the two-way data exchanging system.Comment: INFOCOM 2018 AOI Wkshp, 6 page

    Optimizing Age of Information in Wireless Networks with Perfect Channel State Information

    Full text link
    Age of information (AoI), defined as the time elapsed since the last received update was generated, is a newly proposed metric to measure the timeliness of information updates in a network. We consider AoI minimization problem for a network with general interference constraints, and time varying channels. We propose two policies, namely, virtual-queue based policy and age-based policy when the channel state is available to the network scheduler at each time step. We prove that the virtual-queue based policy is nearly optimal, up to a constant additive factor, and the age-based policy is at-most factor 4 away from optimality. Comparing with our previous work, which derived age optimal policies when channel state information is not available to the scheduler, we demonstrate a 4 fold improvement in age due to the availability of channel state information
    • …
    corecore