992 research outputs found

    Optimization and Communication in UAV Networks

    Get PDF
    UAVs are becoming a reality and attract increasing attention. They can be remotely controlled or completely autonomous and be used alone or as a fleet and in a large set of applications. They are constrained by hardware since they cannot be too heavy and rely on batteries. Their use still raises a large set of exciting new challenges in terms of trajectory optimization and positioning when they are used alone or in cooperation, and communication when they evolve in swarm, to name but a few examples. This book presents some new original contributions regarding UAV or UAV swarm optimization and communication aspects

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas

    Localization Algorithms for GNSS-denied and Challenging Environments

    Get PDF
    In this dissertation, the problem about localization in GNSS-denied and challenging environments is addressed. Specifically, the challenging environments discussed in this dissertation include two different types, environments including only low-resolution features and environments containing moving objects. To achieve accurate pose estimates, the errors are always bounded through matching observations from sensors with surrounding environments. These challenging environments, unfortunately, would bring troubles into matching related methods, such as fingerprint matching, and ICP. For instance, in environments with low-resolution features, the on-board sensor measurements could match to multiple positions on a map, which creates ambiguity; in environments with moving objects included, the accuracy of the estimated localization is affected by the moving objects when performing matching. In this dissertation, two sensor fusion based strategies are proposed to solve localization problems with respect to these two types of challenging environments, respectively. For environments with only low-resolution features, such as flying over sea or desert, a multi-agent localization algorithm using pairwise communication with ranging and magnetic anomaly measurements is proposed in this dissertation. A scalable framework is then presented to extend the multi-agent localization algorithm to be suitable for a large group of agents (e.g., 128 agents) through applying CI algorithm. The simulation results show that the proposed algorithm is able to deal with large group sizes, achieve 10 meters level localization performance with 180 km traveling distance, while under restrictive communication constraints. For environments including moving objects, lidar-inertial-based solutions are proposed and tested in this dissertation. Inspired by the CI algorithm presented above, a potential solution using multiple features motions estimate and tracking is analyzed. In order to improve the performance and effectiveness of the potential solution, a lidar-inertial based SLAM algorithm is then proposed. In this method, an efficient tightly-coupled iterated Kalman filter with a build-in dynamic object filter is designed as the front-end of the SLAM algorithm, and the factor graph strategy using a scan context technology as the loop closure detection is utilized as the back-end. The performance of the proposed lidar-inertial based SLAM algorithm is evaluated with several data sets collected in environments including moving objects, and compared with the state-of-the-art lidar-inertial based SLAM algorithms

    A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From Communications to Sensing and Intelligence

    Full text link
    Due to the advancements in cellular technologies and the dense deployment of cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the fifth-generation (5G) and beyond cellular networks is a promising solution to achieve safe UAV operation as well as enabling diversified applications with mission-specific payload data delivery. In particular, 5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in three-dimensional (3D) space. On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference. Besides the requirement of high-performance wireless communications, the ability to support effective and efficient sensing as well as network intelligence is also essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting aerial and ground users. In this paper, we provide a comprehensive overview of the latest research efforts on integrating UAVs into cellular networks, with an emphasis on how to exploit advanced techniques (e.g., intelligent reflecting surface, short packet transmission, energy harvesting, joint communication and radar sensing, and edge intelligence) to meet the diversified service requirements of next-generation wireless systems. Moreover, we highlight important directions for further investigation in future work.Comment: Accepted by IEEE JSA
    • …
    corecore