1,274 research outputs found

    Efficient HDTV and 3DTV services over DVB-T2 using Multiple PLPs with Layered Media

    Full text link
    [EN] The high bit rates of high-definition or 3D services require a huge share of the valuable terrestrial spectrum, especially when targeting wide coverage areas. This article describes how to provide future services with the state-of-the-art digital terrestrial TV technology DVB-T2 in a flexible and cost-efficient way. The combination of layered media such as the scalable and 3D extension of the H.264/AVC or emerging H.265/HEVC format with the physical layer pipes feature of DVB-T2 enables flexible broadcast of services with differentiated protection of the quality layers. This opens up new ways of service provisioning such as graceful degradation for mobile or fixed reception. This article shows how existing DVB-T2 and MPEG-2 transport stream mechanisms need to be configured for offering such services over DVB-T2. A detailed description of the setup of such services and the involved components is given.Hellge, C.; Wiegand, T.; Guinea Torre, E.; Gomez-Barquero, D.; Schierl, T. (2013). Efficient HDTV and 3DTV services over DVB-T2 using Multiple PLPs with Layered Media. IEEE Communications Magazine. 51(10):76-82. doi:10.1109/MCOM.2013.6619569S7682511

    Delivery of broadband services to SubSaharan Africa via Nigerian communications satellite

    Get PDF
    Africa is the least wired continent in the world in terms of robust telecommunications infrastructure and systems to cater for its more than one billion people. African nations are mostly still in the early stages of Information Communications Technology (ICT) development as verified by the relatively low ICT Development Index (IDI) values of all countries in the African region. In developing nations, mobile broadband subscriptions and penetration between 2000-2009 was increasingly more popular than fixed broadband subscriptions. To achieve the goal of universal access, with rapid implementation of ICT infrastructure to complement the sparsely distributed terrestrial networks in the hinterlands and leveraging the adequate submarine cables along the African coastline, African nations and their stakeholders are promoting and implementing Communication Satellite systems, particularly in Nigeria, to help bridge the digital hiatus. This paper examines the effectiveness of communication satellites in delivering broadband-based services

    Estimation of dielectric constant for various standard materials using microstrip ring resonator

    Get PDF
    Microstrip ring resonator (MRR) is known for dielectric constant determination and many studies used Teflon as a standard sample. However, there are many other materials available which able to perform better or equivalence as the Teflon in calibrating certain dielectric constant measurement. This paper presents simulation of the MRR to investigate frequency shift of materials for dielectric constant estimation using the CST STUDIO SUITE 2016 software. The MRR was designed on RT/Duroid®5880 substrate (εr = 2.2, tanδ = 0.0004) with 50 Ω matching impedance where microstrip width, substrate thickness and ring mean radius were 4.893, 1.575 and 14 mm, respectively to resonate at 2.65340 GHz. Teflon, Polyimide, Isola FR408, Arlon AD250, Arlon AD270 and Gil GML1032 were alternately selected to be placed on top of the MRR as a standard sample to obtain the frequency shift. The frequency shifts for the above materials were 2.56932, 2.46149, 2.44680, 2.53748, 2.52007 and 2.48608 GHz, correspondingly. The differences in frequency shift were used in NetBeans IDE 8.1 algorithm of Java for dielectric constant calculation. The results indicated that Polyimide and Arlon AD250 had the lowest and highest mean percentage error of 0.83536 and 1.76505 %, respectively. Hence, Polyimide might as well be the most suitable candidate as a standard sample in MRR technique for dielectric constant measurement

    Distributed MIMO Schemes for the Future Digital Video Broadcasting

    Get PDF
    International audienceThis paper studies the application of distributed multiple-input multiple-output (MIMO), i.e. MIMO transmission over several geographically separated but cooperated transmitters, for future TV broadcasting systems. It is first shown that distributed MIMO is promising for the future broadcasting systems from a channel capacity perspective. Several STBCs that can be applied in the distributed MIMO broadcasting scenarios are then discussed. Through performance comparison and complexity analyses with realistic system settings and channel model, it can be concluded that simple STBCs are efficient for low data rate applications, while the sophisticated ones are more suitable to deliver high data rate services

    Three-dimensional media for mobile devices

    Get PDF
    Cataloged from PDF version of article.This paper aims at providing an overview of the core technologies enabling the delivery of 3-D Media to next-generation mobile devices. To succeed in the design of the corresponding system, a profound knowledge about the human visual system and the visual cues that form the perception of depth, combined with understanding of the user requirements for designing user experience for mobile 3-D media, are required. These aspects are addressed first and related with the critical parts of the generic system within a novel user-centered research framework. Next-generation mobile devices are characterized through their portable 3-D displays, as those are considered critical for enabling a genuine 3-D experience on mobiles. Quality of 3-D content is emphasized as the most important factor for the adoption of the new technology. Quality is characterized through the most typical, 3-D-specific visual artifacts on portable 3-D displays and through subjective tests addressing the acceptance and satisfaction of different 3-D video representation, coding, and transmission methods. An emphasis is put on 3-D video broadcast over digital video broadcasting-handheld (DVB-H) in order to illustrate the importance of the joint source-channel optimization of 3-D video for its efficient compression and robust transmission over error-prone channels. The comparative results obtained identify the best coding and transmission approaches and enlighten the interaction between video quality and depth perception along with the influence of the context of media use. Finally, the paper speculates on the role and place of 3-D multimedia mobile devices in the future internet continuum involving the users in cocreation and refining of rich 3-D media content

    Economically sustainable public security and emergency network exploiting a broadband communications satellite

    Get PDF
    The research contributes to work in Rapid Deployment of a National Public Security and Emergency Communications Network using Communication Satellite Broadband. Although studies in Public Security Communication networks have examined the use of communications satellite as an integral part of the Communication Infrastructure, there has not been an in-depth design analysis of an optimized regional broadband-based communication satellite in relation to the envisaged service coverage area, with little or no terrestrial last-mile telecommunications infrastructure for delivery of satellite solutions, applications and services. As such, the research provides a case study of a Nigerian Public Safety Security Communications Pilot project deployed in regions of the African continent with inadequate terrestrial last mile infrastructure and thus requiring a robust regional Communications Satellite complemented with variants of terrestrial wireless technologies to bridge the digital hiatus as a short and medium term measure apart from other strategic needs. The research not only addresses the pivotal role of a secured integrated communications Public safety network for security agencies and emergency service organizations with its potential to foster efficient information symmetry amongst their operations including during emergency and crisis management in a timely manner but demonstrates a working model of how analogue spectrum meant for Push-to-Talk (PTT) services can be re-farmed and digitalized as a “dedicated” broadband-based public communications system. The network’s sustainability can be secured by using excess capacity for the strategic commercial telecommunication needs of the state and its citizens. Utilization of scarce spectrum has been deployed for Nigeria’s Cashless policy pilot project for financial and digital inclusion. This effectively drives the universal access goals, without exclusivity, in a continent, which still remains the least wired in the world

    Layer-Aware Forward Error Correction for Mobile Broadcast of Layered Media

    Full text link
    The bitstream structure of layered media formats such as scalable video coding (SVC) or multiview video coding (MVC) opens up new opportunities for their distribution in Mobile TV services. Features like graceful degradation or the support of the 3-D experience in a backwards-compatible way are enabled. The reason is that parts of the media stream are more important than others with each part itself providing a useful media representation. Typically, the decoding of some parts of the bitstream is only possible, if the corresponding more important parts are correctly received. Hence, unequal error protection (UEP) can be applied protecting important parts of the bitstream more strongly than others. Mobile broadcast systems typically apply forward error correction (FEC) on upper layers to cope with transmission errors, which the physical layer FEC cannot correct. Today's FEC solutions are optimized to transmit single layer video. The exploitation of the dependencies in layered media codecs for UEP using FEC is the subject of this paper. The presented scheme, which is called layer-aware FEC (LA-FEC), incorporates the dependencies of the layered video codec into the FEC code construction. A combinatorial analysis is derived to show the potential theoretical gain in terms of FEC decoding probability and video quality. Furthermore, the implementation of LA-FEC as an extension of the Raptor FEC and the related signaling are described. The performance of layer-aware Raptor code with SVC is shown by experimental results in a DVB-H environment showing significant improvements achieved by LA-FEC. © 2011 IEEE.Hellge, C.; Gómez Barquero, D.; Schierl, T.; Wiegand, T. (2011). Layer-Aware Forward Error Correction for Mobile Broadcast of Layered Media. IEEE Transactions on Multimedia. 13(3):551-562. doi:10.1109/TMM.2011.2129499S55156213

    Media fusion and future TV: Examining multi-screen TV convergence in Singapore

    Get PDF
    This study examines Singapore's national media blueprint and industry stakeholders' coping strategies in response to multi-screen TV development. The findings show Singapore muti-screen TV development is still at a nascent stage after launching Media Fushion and FutureTV plans in mid 2009. The policymakers play a key role to follow national media blueprint to unify the inter-industry and cross-country collaboration. TV operators and telcos are found to remediate themselves by harnessing the power of internet and mobile technologies for content innovation and distribution. To tackle the complicated convergent issues in multi-screen TV industry, this study proposes to separately regulate the technology-neutral platforms and diverse audiovisual content. It also recommends a pro-innovative policy with the light-touch licensing scheme and loose content regulation to facilitate the development of the next TV. --three-screen TV,multi-screen TV,convergence,media fusion,IPTV,mobile TV,cross-platform,TV technologies,TV market,TV policy

    Adaptive protection scheme for MVC-encoded stereoscopic video streaming in IP-based networks

    Get PDF
    We present an adaptive unequal error protection (UEP) strategy built on the 1-D interleaved parity Application Layer Forward Error Correction (AL-FEC) code for protecting the transmission of stereoscopic 3D video content encoded with Multiview Video Coding (MVC) through IP-based networks. Our scheme targets the minimization of quality degradation produced by packet losses during video transmission in time-sensitive application scenarios. To that end, based on a novel packet-level distortion model, it selects in real time the most suitable packets within each Group of Pictures (GOP) to be protected and the most convenient FEC technique parameters, i.e., the size of the FEC generator matrix. In order to make these decisions, it considers the relevance of the packet, the behavior of the channel, and the available bitrate for protection purposes. Simulation results validate both the distortion model introduced to estimate the importance of packets and the optimization of the FEC technique parameter values
    • …
    corecore