28 research outputs found

    Multi-user video streaming using unequal error protection network coding in wireless networks

    Get PDF
    In this paper, we investigate a multi-user video streaming system applying unequal error protection (UEP) network coding (NC) for simultaneous real-time exchange of scalable video streams among multiple users. We focus on a simple wireless scenario where users exchange encoded data packets over a common central network node (e.g., a base station or an access point) that aims to capture the fundamental system behaviour. Our goal is to present analytical tools that provide both the decoding probability analysis and the expected delay guarantees for different importance layers of scalable video streams. Using the proposed tools, we offer a simple framework for design and analysis of UEP NC based multi-user video streaming systems and provide examples of system design for video conferencing scenario in broadband wireless cellular networks

    Expanding window fountain codes for unequal error protection

    Get PDF
    A novel approach to provide unequal error protection (UEP) using rateless codes over erasure channels, named Expanding Window Fountain (EWF) codes, is developed and discussed. EWF codes use a windowing technique rather than a weighted (non-uniform) selection of input symbols to achieve UEP property. The windowing approach introduces additional parameters in the UEP rateless code design, making it more general and flexible than the weighted approach. Furthermore, the windowing approach provides better performance of UEP scheme, which is confirmed both theoretically and experimentally. © 2009 IEEE

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    Optimized cross-layer forward error correction coding for H.264 AVC video transmission over wireless channels

    Get PDF
    Forward error correction (FEC) codes that can provide unequal error protection (UEP) have been used recently for video transmission over wireless channels. These video transmission schemes may also benefit from the use of FEC codes both at the application layer (AL) and the physical layer (PL). However, the interaction and optimal setup of UEP FEC codes at the AL and the PL have not been previously investigated. In this paper, we study the cross-layer design of FEC codes at both layers for H.264 video transmission over wireless channels. In our scheme, UEP Luby transform codes are employed at the AL and rate-compatible punctured convolutional codes at the PL. In the proposed scheme, video slices are first prioritized based on their contribution to video quality. Next, we investigate the four combinations of cross-layer FEC schemes at both layers and concurrently optimize their parameters to minimize the video distortion and maximize the peak signal-to-noise ratio. We evaluate the performance of these schemes on four test H.264 video streams and show the superiority of optimized cross-layer FEC design.Peer reviewedElectrical and Computer Engineerin

    Application layer systematic network coding for sliced H.264/AVC video streaming

    Get PDF
    Application Layer Forward Error Correction (AL-FEC) with rateless codes can be applied to protect the video data over lossy channels. Expanding Window Random Linear Codes (EW RLCs) are a flexible unequal error protection fountain coding scheme which can provide prioritized data transmission. In this paper, we propose a system that exploits systematic EW RLC for H.264/Advanced Video Coding (AVC) slice-partitioned data. The system prioritizes slices based on their PSNR contribution to reconstruction as well as temporal significance. Simulation results demonstrate usefulness of using relative slice priority with systematic codes for multimedia broadcast applications
    corecore