13,663 research outputs found

    Optimized meter placement in low voltage grids based on asymmetric state estimation

    Get PDF
    Alongside the ongoing energy system transition towards sustainability new challenges for low voltage grids arise. New technologies connected to those subordinate grids are less predictable, especially decentralized solar plants. Larger loads and a possible reversed power flow lead to increasingly unknown states and can evoke violations of power quality. This paper presents a method to determine an optimized meter placement in low voltage grids using an asymmetric state estimation in order to achieve a cost-efficient monitoring. First, the utilized state estimation method is introduced as well as the usage and parameterization of pseudo measurement values are discussed. Furthermore, a new approach for an optimized meter placement is presented and simulation results for exemplary grids and corresponding power flow data are shown. Subsequent discussions focus on the quality of results subject to the amount as well as the specific positioning of meters placed

    Characterization of the OCO-2 instrument line shape functions using on-orbit solar measurements

    Get PDF
    Accurately characterizing the instrument line shape (ILS) of the Orbiting Carbon Observatory-2 (OCO-2) is challenging and highly important due to its high spectral resolution and requirement for retrieval accuracy (0. 25 %) compared to previous spaceborne grating spectrometers. On-orbit ILS functions for all three bands of the OCO-2 instrument have been derived using its frequent solar measurements and high-resolution solar reference spectra. The solar reference spectrum generated from the 2016 version of the Total Carbon Column Observing Network (TCCON) solar line list shows significant improvements in the fitting residual compared to the solar reference spectrum currently used in the version 7 Level 2 algorithm in the O₂ A band. The analytical functions used to represent the ILS of previous grating spectrometers are found to be inadequate for the OCO-2 ILS. Particularly, the hybrid Gaussian and super-Gaussian functions may introduce spurious variations, up to 5 % of the ILS width, depending on the spectral sampling position, when there is a spectral undersampling. Fitting a homogeneous stretch of the preflight ILS together with the relative widening of the wings of the ILS is insensitive to the sampling grid position and accurately captures the variation of ILS in the O₂ A band between decontamination events. These temporal changes of ILS may explain the spurious signals observed in the solar-induced fluorescence retrieval in barren areas

    Direction for the Future - Successive Acceleration of Positive and Negative Ions Applied to Space Propulsion

    Full text link
    Electrical space thrusters show important advantages for applications in outer space compared to chemical thrusters, as they allow a longer mission lifetime with lower weight and propellant consumption. Mature technologies on the market today accelerate positive ions to generate thrust. The ion beam is neutralized by electrons downstream, and this need for an additional neutralization system has some drawbacks related to stability, lifetime and total weight and power consumption. Many new concepts, to get rid of the neutralizer, have been proposed, and the PEGASES ion-ion thruster is one of them. This new thruster concept aims at accelerating both positive and negative ions to generate thrust, such that additional neutralization is redundant. This chapter gives an overview of the concept of electric propulsion and the state of the development of this new ion-ion thruster.Comment: 10 pages, contribution to the CAS-CERN Accelerator School: Ion Sources, Senec, Slovakia, 29 May - 8 June 2012, edited by R. Bailey. appears in CERN Yellow Report CERN-2013-007, pp.575-58

    LED wristbands for cell-based crowd evacuation: an adaptive exit-choice guidance system architecture

    Get PDF
    Cell-based crowd evacuation systems provide adaptive or static exit-choice indications that favor a coordinated group dynamic, improving evacuation time and safety. While a great effort has been made to modeling its control logic by assuming an ideal communication and positioning infrastructure, the architectural dimension and the influence of pedestrian positioning uncertainty have been largely overlooked. In our previous research, a cell-based crowd evacuation system (CellEVAC) was proposed that dynamically allocates exit gates to pedestrians in a cell-based pedestrian positioning infrastructure. This system provides optimal exit-choice indications through color-based indications and a control logic module built upon an optimized discrete-choice model. Here, we investigate how location-aware technologies and wearable devices can be used for a realistic deployment of CellEVAC. We consider a simulated real evacuation scenario (Madrid Arena) and propose a system architecture for CellEVAC that includes: a controller node, a radio-controlled light-emitting diode (LED) wristband subsystem, and a cell-node network equipped with active Radio Frequency Identification (RFID) devices. These subsystems coordinate to provide control, display, and positioning capabilities. We quantitatively study the sensitivity of evacuation time and safety to uncertainty in the positioning system. Results showed that CellEVAC was operational within a limited range of positioning uncertainty. Further analyses revealed that reprogramming the control logic module through a simulation optimization process, simulating the positioning system's expected uncertainty level, improved the CellEVAC performance in scenarios with poor positioning systems.Ministerio de EconomĂ­a, Industria y Competitivida
    • 

    corecore