3,127 research outputs found

    PULP-HD: Accelerating Brain-Inspired High-Dimensional Computing on a Parallel Ultra-Low Power Platform

    Full text link
    Computing with high-dimensional (HD) vectors, also referred to as hypervectors\textit{hypervectors}, is a brain-inspired alternative to computing with scalars. Key properties of HD computing include a well-defined set of arithmetic operations on hypervectors, generality, scalability, robustness, fast learning, and ubiquitous parallel operations. HD computing is about manipulating and comparing large patterns-binary hypervectors with 10,000 dimensions-making its efficient realization on minimalistic ultra-low-power platforms challenging. This paper describes HD computing's acceleration and its optimization of memory accesses and operations on a silicon prototype of the PULPv3 4-core platform (1.5mm2^2, 2mW), surpassing the state-of-the-art classification accuracy (on average 92.4%) with simultaneous 3.7Ă—\times end-to-end speed-up and 2Ă—\times energy saving compared to its single-core execution. We further explore the scalability of our accelerator by increasing the number of inputs and classification window on a new generation of the PULP architecture featuring bit-manipulation instruction extensions and larger number of 8 cores. These together enable a near ideal speed-up of 18.4Ă—\times compared to the single-core PULPv3

    EIE: Efficient Inference Engine on Compressed Deep Neural Network

    Full text link
    State-of-the-art deep neural networks (DNNs) have hundreds of millions of connections and are both computationally and memory intensive, making them difficult to deploy on embedded systems with limited hardware resources and power budgets. While custom hardware helps the computation, fetching weights from DRAM is two orders of magnitude more expensive than ALU operations, and dominates the required power. Previously proposed 'Deep Compression' makes it possible to fit large DNNs (AlexNet and VGGNet) fully in on-chip SRAM. This compression is achieved by pruning the redundant connections and having multiple connections share the same weight. We propose an energy efficient inference engine (EIE) that performs inference on this compressed network model and accelerates the resulting sparse matrix-vector multiplication with weight sharing. Going from DRAM to SRAM gives EIE 120x energy saving; Exploiting sparsity saves 10x; Weight sharing gives 8x; Skipping zero activations from ReLU saves another 3x. Evaluated on nine DNN benchmarks, EIE is 189x and 13x faster when compared to CPU and GPU implementations of the same DNN without compression. EIE has a processing power of 102GOPS/s working directly on a compressed network, corresponding to 3TOPS/s on an uncompressed network, and processes FC layers of AlexNet at 1.88x10^4 frames/sec with a power dissipation of only 600mW. It is 24,000x and 3,400x more energy efficient than a CPU and GPU respectively. Compared with DaDianNao, EIE has 2.9x, 19x and 3x better throughput, energy efficiency and area efficiency.Comment: External Links: TheNextPlatform: http://goo.gl/f7qX0L ; O'Reilly: https://goo.gl/Id1HNT ; Hacker News: https://goo.gl/KM72SV ; Embedded-vision: http://goo.gl/joQNg8 ; Talk at NVIDIA GTC'16: http://goo.gl/6wJYvn ; Talk at Embedded Vision Summit: https://goo.gl/7abFNe ; Talk at Stanford University: https://goo.gl/6lwuer. Published as a conference paper in ISCA 201

    Hardware Acceleration for Unstructured Big Data and Natural Language Processing.

    Full text link
    The confluence of the rapid growth in electronic data in recent years, and the renewed interest in domain-specific hardware accelerators presents exciting technical opportunities. Traditional scale-out solutions for processing the vast amounts of text data have been shown to be energy- and cost-inefficient. In contrast, custom hardware accelerators can provide higher throughputs, lower latencies, and significant energy savings. In this thesis, I present a set of hardware accelerators for unstructured big-data processing and natural language processing. The first accelerator, called HAWK, aims to speed up the processing of ad hoc queries against large in-memory logs. HAWK is motivated by the observation that traditional software-based tools for processing large text corpora use memory bandwidth inefficiently due to software overheads, and, thus, fall far short of peak scan rates possible on modern memory systems. HAWK is designed to process data at a constant rate of 32 GB/s—faster than most extant memory systems. I demonstrate that HAWK outperforms state-of-the-art software solutions for text processing, almost by an order of magnitude in many cases. HAWK occupies an area of 45 sq-mm in its pareto-optimal configuration and consumes 22 W of power, well within the area and power envelopes of modern CPU chips. The second accelerator I propose aims to speed up similarity measurement calculations for semantic search in the natural language processing space. By leveraging the latency hiding concepts of multi-threading and simple scheduling mechanisms, my design maximizes functional unit utilization. This similarity measurement accelerator provides speedups of 36x-42x over optimized software running on server-class cores, while requiring 56x-58x lower energy, and only 1.3% of the area.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/116712/1/prateekt_1.pd

    A Language and Hardware Independent Approach to Quantum-Classical Computing

    Full text link
    Heterogeneous high-performance computing (HPC) systems offer novel architectures which accelerate specific workloads through judicious use of specialized coprocessors. A promising architectural approach for future scientific computations is provided by heterogeneous HPC systems integrating quantum processing units (QPUs). To this end, we present XACC (eXtreme-scale ACCelerator) --- a programming model and software framework that enables quantum acceleration within standard or HPC software workflows. XACC follows a coprocessor machine model that is independent of the underlying quantum computing hardware, thereby enabling quantum programs to be defined and executed on a variety of QPUs types through a unified application programming interface. Moreover, XACC defines a polymorphic low-level intermediate representation, and an extensible compiler frontend that enables language independent quantum programming, thus promoting integration and interoperability across the quantum programming landscape. In this work we define the software architecture enabling our hardware and language independent approach, and demonstrate its usefulness across a range of quantum computing models through illustrative examples involving the compilation and execution of gate and annealing-based quantum programs
    • …
    corecore