6 research outputs found

    Optimized Link Adaptation for DVB-S2X Precoded Waveforms based on SNIR Estimation

    Get PDF
    The present work deals with optimized strategies to address the issue of link adaptation (Adaptive Coding and Modulation - ACM) in a multi-user multi-beam satellite system employing precoding at the gateway side. Accordingly, the focus is on the forward link of a multi-beam satellite system employing a full frequency reuse configuration. In such an interference limited setting, the Super-Framing structure of DVB-S2X air interface (format specification 2 and 3) enables the use of precoding techniques. The aim herein is to investigate the Signal-to-Noise-plus- Interference (SNIR) estimation error given by the User Terminals (UTs) through the so-called P2 pilots is taken into account to optimize the ACM margins

    Adaptive power link adaptation on DVB-T system based on picture quality feedback

    Get PDF
    In digital television systems such as DVB-T, service provider has difficulties to observe the quality of picture reception in the viewers’ television. This is due to the unavailability of quality feedback sent from viewers’ devices to the service provider. Therefore, this research proposes link adaptation method in DVB-T system based on image quality measurement at recipient side, so that service provider may adjust the transmission power in real-time to improve the image quality. Quality metric used in this research is human perception- based no-reference image quality metric, which does not need the presence of the reference frame. The quality assessment is focused on the severeness of blocking artifact, which is the dominant artifacts in MPEG video. The numerical results have shown that power adaptation could maintain good picture quality as well as transmission power efficiency at the same time on the digital television transmission system. The proposed scheme is also suitable for other DVB system as well as various digital television system standards

    A Tutorial on Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions

    Get PDF
    IEEE Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by manipulating the interfering signals such that they add up constructively at the receiver side, known interference can be made beneficial and further improve the system performance in a variety of wireless scenarios, achieved by symbol-level precoding (SLP). This paper aims to provide a tutorial on interference exploitation techniques from the perspective of precoding design in a multi-antenna wireless communication system, by beginning with the classification of constructive interference (CI) and destructive interference (DI). The definition for CI is presented and the corresponding mathematical characterization is formulated for popular modulation types, based on which optimization-based precoding techniques are discussed. In addition, the extension of CI precoding to other application scenarios as well as for hardware efficiency is also described. Proof-of-concept testbeds are demonstrated for the potential practical implementation of CI precoding, and finally a list of open problems and practical challenges are presented to inspire and motivate further research directions in this area

    Advanced Symbol-level Precoding Schemes for Interference Exploitation in Multi-antenna Multi-user Wireless Communications

    Get PDF
    The utilization of multi-antenna transmitters relying on full frequency reuse has proven to be an effective strategy towards fulfilling the constantly increasing throughput requirements of wireless communication systems. As a consequence, in the last two decades precoding has been a prolific research area, due to its ability to handle the interference arising among simultaneous transmissions addressed to different co-channel users. The conventional precoding strategies aim at mitigating the multi-user interference (MUI) by exploiting the knowledge of the channel state information (CSI). More recently, novel approaches have been proposed where the aim is not to eliminate the interference, but rather to control it so as to achieve a constructive interference effect at each receiver. In these schemes, referred to as symbol-level precoding (SLP), the data information (data symbols) is used together with the CSI in the precoding design, which can be addressed following several optimization strategies. In the context of SLP, the work carried out in this thesis is mainly focused on developing more advanced optimization strategies suitable to non-linear systems, where the per-antenna high-power amplifiers introduce an amplitude and phase distortion on the transmitted signals. More specifically, the main objective is to exploit the potential of SLP not only to achieve the constructive interference at the receivers, but also to control the per-antenna instantaneous transmit power, improving the power dynamics of the transmitted waveforms. In fact, a reduction of the power variation of the signals, both in the spatial dimension (across the different antennas) and in the temporal dimension, is particularly important for mitigating the non-linear effects. After a detailed review of the state of the art of SLP, the first part of the thesis is focused on improving the power dynamics of the transmitted signals in the spatial dimension, by reducing the instantaneous power imbalances across the different antennas. First, a SLP per-antenna power minimization scheme is presented, followed by a related max-min fair formulation with per-antenna power constraints. These approaches allow to reduce the power peaks of the signals across the antennas. Next, more advanced SLP schemes are formulated and solved, with the objective of further improving the spatial dynamics of the signals. Specifically, a first approach performs a peak power minimization under a lower bound constraint on the per-antenna transmit power, while a second strategy minimizes the spatial peak-to-average power ratio. The second part of this thesis is devoted to developing a novel SLP method, referred to as spatio-temporal SLP, where the temporal variation of the transmit power is also considered in the SLP optimization. This new model allows to minimize the peak-to-average power ratio of the transmitted waveforms both in the spatial and in the temporal dimensions, thus further improving the robustness of the signals to non-linear effects. Then, this thesis takes one step further, by exploiting the developed spatio-temporal SLP model in a different context. In particular, a spatio-temporal SLP scheme is proposed which enables faster-than-Nyquist (FTN) signaling over multi-user systems, by constructively handling at the transmitter side not only the MUI but also the inter-symbol interference (ISI). This strategy allows to benefit from the increased throughput provided by FTN signaling without imposing additional complexity at the user terminals. Extensive numerical results are presented throughout the thesis, in order to assess the performance of the proposed schemes with respect to the state of the art in SLP. The thesis concludes summarizing the main research findings and identifying the open problems, which will constitute the basis for the future work
    corecore