1,945 research outputs found

    Experimentation with MANETs of Smartphones

    Full text link
    Mobile AdHoc NETworks (MANETs) have been identified as a key emerging technology for scenarios in which IEEE 802.11 or cellular communications are either infeasible, inefficient, or cost-ineffective. Smartphones are the most adequate network nodes in many of these scenarios, but it is not straightforward to build a network with them. We extensively survey existing possibilities to build applications on top of ad-hoc smartphone networks for experimentation purposes, and introduce a taxonomy to classify them. We present AdHocDroid, an Android package that creates an IP-level MANET of (rooted) Android smartphones, and make it publicly available to the community. AdHocDroid supports standard TCP/IP applications, providing real smartphone IEEE 802.11 MANET and the capability to easily change the routing protocol. We tested our framework on several smartphones and a laptop. We validate the MANET running off-the-shelf applications, and reporting on experimental performance evaluation, including network metrics and battery discharge rate.Comment: 6 pages, 7 figures, 1 tabl

    Joint Head Selection and Airtime Allocation for Data Dissemination in Mobile Social Networks

    Full text link
    Mobile social networks (MSNs) enable people with similar interests to interact without Internet access. By forming a temporary group, users can disseminate their data to other interested users in proximity with short-range communication technologies. However, due to user mobility, airtime available for users in the same group to disseminate data is limited. In addition, for practical consideration, a star network topology among users in the group is expected. For the former, unfair airtime allocation among the users will undermine their willingness to participate in MSNs. For the latter, a group head is required to connect other users. These two problems have to be properly addressed to enable real implementation and adoption of MSNs. To this aim, we propose a Nash bargaining-based joint head selection and airtime allocation scheme for data dissemination within the group. Specifically, the bargaining game of joint head selection and airtime allocation is first formulated. Then, Nash bargaining solution (NBS) based optimization problems are proposed for a homogeneous case and a more general heterogeneous case. For both cases, the existence of solution to the optimization problem is proved, which guarantees Pareto optimality and proportional fairness. Next, an algorithm, allowing distributed implementation, for join head selection and airtime allocation is introduced. Finally, numerical results are presented to evaluate the performance, validate intuitions and derive insights of the proposed scheme

    Context-Aware Configuration and Management of WiFi Direct Groups for Real Opportunistic Networks

    Full text link
    Wi-Fi Direct is a promising technology for the support of device-to-device communications (D2D) on commercial mobile devices. However, the standard as-it-is is not sufficient to support the real deployment of networking solutions entirely based on D2D such as opportunistic networks. In fact, WiFi Direct presents some characteristics that could limit the autonomous creation of D2D connections among users' personal devices. Specifically, the standard explicitly requires the user's authorization to establish a connection between two or more devices, and it provides a limited support for inter-group communication. In some cases, this might lead to the creation of isolated groups of nodes which cannot communicate among each other. In this paper, we propose a novel middleware-layer protocol for the efficient configuration and management of WiFi Direct groups (WiFi Direct Group Manager, WFD-GM) to enable autonomous connections and inter-group communication. This enables opportunistic networks in real conditions (e.g., variable mobility and network size). WFD-GM defines a context function that takes into account heterogeneous parameters for the creation of the best group configuration in a specific time window, including an index of nodes' stability and power levels. We evaluate the protocol performances by simulating three reference scenarios including different mobility models, geographical areas and number of nodes. Simulations are also supported by experimental results related to the evaluation in a real testbed of the involved context parameters. We compare WFD-GM with the state-of-the-art solutions and we show that it performs significantly better than a Baseline approach in scenarios with medium/low mobility, and it is comparable with it in case of high mobility, without introducing additional overhead.Comment: Accepted by the IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), 201

    Data Connectivity and Smart Group Formation in Wi-Fi Direct Multi-group Networks

    Get PDF
    Users of Device-to-Device (D2D) communication need efficient content discovery mechanisms to steer their requests toward the node in their neighborhood that is most likely to satisfy them. The problem is further compounded by the lack of a central coordination entity as well as by the inherent mobility of devices, which leads to volatile topologies. In this paper, we first discuss group-based communication among non-rooted Android devices using Wi-Fi Direct, a protocol recently standardized by the Wi-Fi Alliance. We propose intra- and inter-group communication methodologies, which we validate through a simple testbed where content-centric routing is used. Next, we address the autonomous formation of groups with the goal of achieving efficient device resource utilization as well as full connectivity. Finally, we evaluate the performance of our group formation procedure both in simulation and in a real testbed involving Android devices in different topologies
    • …
    corecore