30,045 research outputs found

    Magnetorheological landing gear: 1. A design methodology

    Get PDF
    Aircraft landing gears are subjected to a wide range of excitation conditions, which result in conflicting damping requirements. A novel solution to this problem is to implement semi-active damping using magnetorheological (MR) fluids. This paper presents a design methodology that enables an MR landing gear to be optimized, both in terms of its damping and magnetic circuit performance, whilst adhering to stringent packaging constraints. Such constraints are vital in landing gear, if MR technology is to be considered as feasible in commercial applications. The design approach focuses on the impact or landing phase of an aircraft's flight, where large variations in sink speed, angle of attack and aircraft mass makes an MR device potentially very attractive. In this study, an equivalent MR model of an existing aircraft landing gear is developed. This includes a dynamic model of an MR shock strut, which accounts for the effects of fluid compressibility. This is important in impulsive loading applications such as landing gear, as fluid compression will reduce device controllability. Using the model, numerical impact simulations are performed to illustrate the performance of the optimized MR shock strut, and hence the effectiveness of the proposed design methodology. Part 2 of this contribution focuses on experimental validation

    Performance Enhancement of the Flexible Transonic Truss-Braced Wing Aircraft Using Variable-Camber Continuous Trailing-Edge Flaps

    Get PDF
    Aircraft designers are to a growing extent using vehicle flexibility to optimize performance with objectives such as gust load alleviation and drag minimization. More complex aerodynamically optimized configurations may also require dynamic loads and perhaps eventually flutter suppression. This paper considers an aerodynamically optimized truss-braced wing aircraft designed for a Mach 0.745 cruise. The variable camber continuous trailing edge flap concept with a feedback control system is used to enhance aeroelastic stability. A linearized reduced order aerodynamic model is developed from unsteady Reynolds averaged Navier-Stokes simulations. A static output feedback controller is developed from that model. Closed-loop simulations using the reduced order aerodynamic model show that the controller is effective in stabilizing the vehicle dynamics

    Design oriented simulation of contact-friction instabilities in application to realistic brake assemblies

    Get PDF
    This paper presents advances in non-linear simulations for systems with contact-friction, with an application to brake squeal. A method is proposed to orient component structural modifications from brake assembly simulations in the frequency and time domains. A reduction method implementing explicitly component-wise degrees of freedom at the system level allows quick parametric analyses giving modification clues. The effect of the modification is then validated in the time domain where non-linearities can be fully considered. A reduction method adapted for models showing local non-linearities is purposely presented along with an optimization of a modified non linear Newmark scheme to make such computation possible for industrial models. The paper then illustrates the importance of structural effects in brake squeal, and suggests solutions

    Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design

    Get PDF
    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms.Peer ReviewedPostprint (author’s final draft

    Damage localization using experimental modal parameters and topology optimization

    Get PDF
    This work focuses on the developement of a damage detection and localization tool using the Topology Optimization feature of MSC.Nastran. This approach is based on the correlation of a local stiness loss and the change in modal parameters due to damages in structures. The loss in stiness is accounted by the Topology Optimization approach for updating undamaged numerical models towards similar models with embedded damages. Hereby, only a mass penalization and the changes in experimentally obtained modal parameters are used as objectives. The theoretical background for the implementation of this method is derived and programmed in a Nastran input file and the general feasibility of the approach is validated numerically, as well as experimentally by updating a model of an experimentally tested composite laminate specimen. The damages have been introduced to the specimen by controlled low energy impacts and high quality vibration tests have been conducted on the specimen for dierent levels of damage. These supervised experiments allow to test the numerical diagnosis tool by comparing the result with both NDT technics and results of previous works (concerning shifts in modal parameters due to damage). Good results have finally been archieved for the localization of the damages by the Topology Optimization

    RF-MEMS switch actuation pulse optimization using Taguchi's method

    Get PDF
    Copyright @ 2011 Springer-VerlagReliability and longevity comprise two of the most important concerns when designing micro-electro-mechanical-systems (MEMS) switches. Forcing the switch to perform close to its operating limits underlies a trade-off between response bandwidth and fatigue life due to the impact force of the cantilever touching its corresponding contact point. This paper presents for first time an actuation pulse optimization technique based on Taguchi’s optimization method to optimize the shape of the actuation pulse of an ohmic RF-MEMS switch in order to achieve better control and switching conditions. Simulation results show significant reduction in impact velocity (which results in less than 5 times impact force than nominal step pulse conditions) and settling time maintaining good switching speed for the pull down phase and almost elimination of the high bouncing phenomena during the release phase of the switch

    CAD enabled trajectory optimization and accurate motion control for repetitive tasks

    Get PDF
    As machine users generally only define the start and end point of the movement, a large trajectory optimization potential rises for single axis mechanisms performing repetitive tasks. However, a descriptive mathematical model of the mecha- nism needs to be defined in order to apply existing optimization techniques. This is usually done with complex methods like virtual work or Lagrange equations. In this paper, a generic technique is presented to optimize the design of point-to-point trajectories by extracting position dependent properties with CAD motion simulations. The optimization problem is solved by a genetic algorithm. Nevertheless, the potential savings will only be achieved if the machine is capable of accurately following the optimized trajectory. Therefore, a feedforward motion controller is derived from the generic model allowing to use the controller for various settings and position profiles. Moreover, the theoretical savings are compared with experimental data from a physical set-up. The results quantitatively show that the savings potential is effectively achieved thanks to advanced torque feedforward with a reduction of the maximum torque by 12.6% compared with a standard 1/3-profil
    corecore